Skip to main content
Log in

4D printing of thermoresponsive materials: a state-of-the-art review and prospective applications

  • Review
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

The use of thermoresponsive smart polymers is the need of the hour and a matter of scientific interest in 3D printing applications such as sensors, drug delivery, scaffold manufacturing, tissue engineering, bio-separation, regenerative medicines, and tissue reconstructions. In the last decade, a variety of different thermoresponsive materials and their 3D printing processes have been developed for such applications. So, the novice researchers working in 3D printing of thermoresponsive materials are looking for the collective information of the processing, application, tools, and techniques requirement with future aspects of research. The applications of specific stimuli have been discussed in this paper with their effect on shape change behaviour. This research paper aims to provide state-of-the-art knowledge for the 3D printing of thermoresponsive polymers with knowledge of materials processing, a recent innovation, innovative 3D printing processes used for thermoresponsive materials, materials information of thermoresponsive polymers and targeted applications. The future scope for the 4D printing of thermoresponsive polymers have been provided throughout the manuscript for the extended applications and studies. Also, this study is supported by an innovative case study for the implementation 3D printing process as recycling of thermoresponsive materials for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  1. Zafar, M.Q., Zhao, H.: 4D printing: future insight in additive manufacturing. Met. Mater. Int. 17, 1–22 (2019)

    Google Scholar 

  2. Al Rashid, A., Khan, S.A., Al-Ghamdi, S.G., Koc, M.: Additive manufacturing: technology, applications, markets, and opportunities for the built environment. Autom. Constr. 118, 103268 (2020)

    Article  Google Scholar 

  3. Falahati, M., Ahmadvand, P., Safaee, S., Chang, Y.C., Lyu, Z., Chen, R., Li, L., Lin, Y.: Smart polymers and nanocomposites for 3D and 4D printing. Mater. Today (2020). https://doi.org/10.1016/j.mattod.2020.06.001

    Article  Google Scholar 

  4. Bikas, H., Stavropoulos, P., Chryssolouris, G.: Additive manufacturing methods and modelling approaches: a critical review. Int. J. Adv. Manuf. Technol. 83(1–4), 389–405 (2016)

    Article  Google Scholar 

  5. Kuang, X., Roach, D.J., Wu, J., Hamel, C.M., Ding, Z., Wang, T., Dunn, M.L., Qi, H.J.: Advances in 4D printing: materials and applications. Adv. Funct. Mater. 29(2), 1805290 (2019)

    Article  Google Scholar 

  6. Joshi, S., Rawat, K., Karunakaran, C., Rajamohan, V., Mathew, A.T., Koziol, K., Thakur, V.K., Balan, A.S.: 4D printing of materials for the future: opportunities and challenges. Appl. Mater. Today 18, 100490 (2020)

    Article  Google Scholar 

  7. Ly, S.T., Kim, J.Y.: 4D printing–fused deposition modeling printing with thermal-responsive shape memory polymers. Int. J. Precis. Eng. Manuf. Green Technol. 4(3), 267–272 (2017)

    Article  MathSciNet  Google Scholar 

  8. Barletta, M., Gisario, A., Mehrpouya, M.: 4D printing of shape memory polylactic acid (PLA) components: investigating the role of the operational parameters in fused deposition modelling (FDM). J. Manuf. Process. 61, 473–480 (2021)

    Article  Google Scholar 

  9. Khoo, Z.X., Teoh, J.E., Liu, Y., Chua, C.K., Yang, S., An, J., Leong, K.F., Yeong, W.Y.: 3D printing of smart materials: a review on recent progresses in 4D printing. Virtual Phys. Prototyp. 10(3), 103–122 (2015)

    Article  Google Scholar 

  10. Shin, D.G., Kim, T.H., Kim, D.E.: Review of 4D printing materials and their properties. Int. J. Precis. Eng. Manuf. Green Technol. 4(3), 349–357 (2017)

    Article  Google Scholar 

  11. Mehrpouya, M., Azizi, A., Janbaz, S., Gisario, A.: Investigation on the functionality of thermoresponsive origami structures. Adv. Eng. Mater. 22(8), 2000296 (2020)

    Article  Google Scholar 

  12. Santo, L.: Shape memory polymer foams. Prog. Aerosp. Sci. 81, 60–65 (2016)

    Article  Google Scholar 

  13. Bawa, P., Pillay, V., Choonara, Y.E., Du Toit, L.C.: Stimuli-responsive polymers and their applications in drug delivery. Biomed. Mater. 4(2), 022001 (2009)

    Article  Google Scholar 

  14. Rastogi, P., Kandasubramanian, B.: Breakthrough in the printing tactics for stimuli-responsive materials: 4D printing. Chem. Eng. J. 366, 264–304 (2019)

    Article  Google Scholar 

  15. Zhang, Z., Demir, K.G., Gu, G.X.: Developments in 4D-printing: a review on current smart materials, technologies, and applications. Int. J. Smart Nano Mater. 10(3), 205–224 (2019)

    Article  Google Scholar 

  16. Fernandes, C., Heggannavar, G.B., Kariduraganavar, M.Y., Mitchell, G.R., Alves, N., Morouço, P.: Smart materials for biomedical applications: the usefulness of shape-memory polymers. Appl. Mech. Mater. 890, 237–247 (2019)

    Article  Google Scholar 

  17. Jones, D.: Pharmaceutical applications of polymers for drug delivery (2004)

  18. Hsieh, C.H., Mohd Razali, N.A., Lin, W.C., Yu, Z.W., Istiqomah, D., Kotsuchibashi, Y., Su, H.H.: Development of thermo-responsive polycaprolactone-polydimethylsiloxane shrinkable nanofibre mesh. Nanomaterials 10(7), 1427 (2020)

    Article  Google Scholar 

  19. Hogan, K.J., Mikos, A.G.: Biodegradable thermoresponsive polymers: applications in drug delivery and tissue engineering. Polymer 211, 123063 (2020)

    Article  Google Scholar 

  20. Dai, S., Ravi, P., Tam, K.C.: pH-Responsive polymers: synthesis, properties and applications. Soft Matter 4(3), 435–449 (2008)

    Article  Google Scholar 

  21. Luo, H., Li, Z., Yi, G., Zu, X., Wang, H., Wang, Y., Huang, H., Hu, J., Liang, Z., Zhong, B.: Electro-responsive silver nanowire-shape memory polymer composites. Mater. Lett. 134, 172–175 (2014)

    Article  Google Scholar 

  22. Prakash, C., Kansal, H.K., Pabla, B.S., Puri, S., Aggarwal, A.: Electric discharge machining–A potential choice for surface modification of metallic implants for orthopaedic applications: a review. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 230(2), 331–353 (2016)

    Article  Google Scholar 

  23. Safarik, I., Safarikova, M.: Magnetically responsive nanocomposite materials for bioapplications. Solid State Phenom. 151, 88–94 (2009)

    Article  Google Scholar 

  24. Leist, S.K., Zhou, J.: Current status of 4D printing technology and the potential of light-reactive smart materials as 4D printable materials. Virtual Phys. Prototyp. 11(4), 249–262 (2016)

    Article  Google Scholar 

  25. Chu, H., Yang, W., Sun, L., Cai, S., Yang, R., Liang, W., Yu, H., Liu, L.: 4D printing: a review on recent progresses. Micromachines 11(9), 796 (2020)

    Article  Google Scholar 

  26. Jingcheng, L., Reddy, V.S., Jayathilaka, W.A., Chinnappan, A., Ramakrishna, S., Ghosh, R.: Intelligent polymers, fibers and applications. Polymers 13(9), 1427 (2021)

    Article  Google Scholar 

  27. Zolfagharian, A., Kaynak, A., Kouzani, A.: Closed-loop 4D-printed soft robots. Mater. Des. 188, 108411 (2020)

    Article  Google Scholar 

  28. Pandey, A., Singh, G., Singh, S., Jha, K., Prakash, C.: 3D printed biodegradable functional temperature-stimuli shape memory polymer for customized scaffoldings. J. Mech. Behav. Biomed. Mater. 108, 103781 (2020)

    Article  Google Scholar 

  29. Schmaljohann, D.: Thermo-and pH-responsive polymers in drug delivery. Adv. Drug Deliv. Rev. 58(15), 1655–1670 (2006)

    Article  Google Scholar 

  30. Chu, S., Shi, X., Tian, Y., Gao, F.: pH-responsive polymer nanomaterials for tumor therapy. Front. Oncol. 12, 855019 (2022)

    Article  Google Scholar 

  31. Almeida, H., Amaral, M.H., Lobão, P.: Temperature and pH stimuli-responsive polymers and their applications in controlled and selfregulated drug delivery. J. Appl. Pharm. Sci. (2012). https://doi.org/10.7324/JAPS.2012.2609

    Article  Google Scholar 

  32. Kanaan, A.F., Piedade, A.P.: Electro-responsive polymer-based platforms for electrostimulation of cells. Mater. Adv. 3(5), 2337–2353 (2022)

    Article  Google Scholar 

  33. Palza, H., Zapata, P.A., Angulo-Pineda, C.: Electroactive smart polymers for biomedical applications. Materials 12(2), 277 (2019)

    Article  Google Scholar 

  34. Li, Y., Gong, X., Liu, Y., Wu, J.: Synthesis, characterization, and applications of magneto-responsive functional materials. Front. Mater. (2021). https://doi.org/10.3389/fmats.2021.710474

    Article  Google Scholar 

  35. Thévenot, J., Oliveira, H., Sandre, O., Lecommandoux, S.: Magnetic responsive polymer composite materials. Chem. Soc. Rev. 42(17), 7099–7116 (2013). https://doi.org/10.1039/C3CS60058K

    Article  Google Scholar 

  36. Li, L., Scheiger, J.M., Levkin, P.A.: Design and applications of photoresponsive hydrogels. Adv. Mater. 31(26), 1807333 (2019)

    Article  Google Scholar 

  37. Future applications of Photo-resposive polymers, https://matmatch.com/resources/blog/photo-responsive-polymers/ retrieved on 28 June, 2022

  38. Liu, Y.Q., Chen, Z.D., Han, D.D., Mao, J.W., Ma, J.N., Zhang, Y.L., Sun, H.B.: Bioinspired soft robots based on the moisture-responsive graphene oxide. Adv. Sci. 8(10), 2002464 (2021)

    Article  Google Scholar 

  39. Tiptipakorn, S., Rimdusit, S.: Shape memory polymers from polybenzoxazine-modified polymers. In: Advanced and Emerging Polybenzoxazine Science and Technology, pp. 1029–1049. Elsevier (2017)

  40. Yue, C., Li, M., Liu, Y., Fang, Y., Song, Y., Xu, M., Li, J.: Three-dimensional printing of cellulose nanofibers reinforced PHB/PCL/Fe3O4 magneto-responsive shape memory polymer composites with excellent mechanical properties. Addit. Manuf. 46, 102146 (2021)

    Google Scholar 

  41. Wu, S., Li, W., Sun, Y., Pang, X., Zhang, X., Zhuang, J., Zhang, H., Hu, C., Lei, B., Liu, Y.: Facile fabrication of a CD/PVA composite polymer to access light-responsive shape-memory effects. J. Mater. Chem. C 8(26), 8935–8941 (2020)

    Article  Google Scholar 

  42. Yu, K., Qi, H.J.: Temperature memory effect in amorphous shape memory polymers. Soft Matter 10(47), 9423–9432 (2014)

    Article  Google Scholar 

  43. Sheoran, A.J., Kumar, H.: Fused deposition modeling process parameters optimization and effect on mechanical properties and part quality: review and reflection on present research. Mater. Today Proc. 21, 1659–1672 (2020)

    Article  Google Scholar 

  44. Ahmed, A., Arya, S., Gupta, V., Furukawa, H., Khosla, A.: 4D printing: fundamentals, materials, applications and challenges. Polymer 6, 123926 (2021)

    Article  Google Scholar 

  45. Gu, P., Li, L.: Fabrication of biomedical prototypes with locally controlled properties using FDM. CIRP Ann. 51(1), 181–184 (2002)

    Article  Google Scholar 

  46. Singh, S., Singh, G., Prakash, C., Ramakrishna, S.: Current status and future directions of fused filament fabrication. J. Manuf. Process. 55, 288–306 (2020)

    Article  Google Scholar 

  47. Ransikarbum, K., Pitakaso, R., Kim, N.: A decision-support model for additive manufacturing scheduling using an integrative analytic hierarchy process and multi-objective optimization. Appl. Sci. 10(15), 5159 (2020)

    Article  Google Scholar 

  48. Pagac, M., Hajnys, J., Ma, Q.P., Jancar, L., Jansa, J., Stefek, P., Mesicek, J.: A review of vat photopolymerization technology: materials, applications, challenges, and future trends of 3D printing. Polymers 13(4), 598 (2021)

    Article  Google Scholar 

  49. Melchels, F.P., Feijen, J., Grijpma, D.W.: A review on stereolithography and its applications in biomedical engineering. Biomaterials 31(24), 6121–6130 (2010)

    Article  Google Scholar 

  50. Kafle, A., Luis, E., Silwal, R., Pan, H.M., Shrestha, P.L., Bastola, A.K.: 3D/4D Printing of polymers: fused deposition modelling (FDM), selective laser sintering (SLS), and stereolithography (SLA). Polymers 13(18), 3101 (2021)

    Article  Google Scholar 

  51. Mazzoli, A.: Selective laser sintering in biomedical engineering. Med. Biol. Eng. Comput. 51(3), 245–256 (2013)

    Article  Google Scholar 

  52. Rider, P., Kačarević, ŽP., Alkildani, S., Retnasingh, S., Schnettler, R., Barbeck, M.: Additive manufacturing for guided bone regeneration: a perspective for alveolar ridge augmentation. Int. J. Mol. Sci. 19(11), 3308 (2018)

    Article  Google Scholar 

  53. Tse, C.C., Smith, P.J.: Inkjet printing for biomedical applications. Methods Mol. Biol. (Clifton, NJ) 1771, 107–117 (2018)

    Article  Google Scholar 

  54. Feilden, E.: Additive manufacturing of ceramics and ceramic composites via robocasting

  55. Fan, T., Liao, G.Y., Yeh, C.P., Chen, J.C.: Direct ink writing extruders for biomedical applications. In: 2017 ASEE Annual Conference & Exposition 2017 Jun 24

  56. Zhang, H., Moon, S.K., Ngo, T.H.: 3D printed electronics of non-contact ink writing techniques: status and promise. Int. J. Precis. Eng. Manuf. Green Technol. 7(2), 511–524 (2020)

    Article  Google Scholar 

  57. Solís Pinargote, N.W., Smirnov, A., Peretyagin, N., Seleznev, A., Peretyagin, P.: Direct ink writing technology (3d printing) of graphene-based ceramic nanocomposites: a review. Nanomaterials 10(7), 1300 (2020)

    Article  Google Scholar 

  58. Bayart, M., Charlon, S., Soulestin, J.: Fused filament fabrication of scaffolds for tissue engineering; How realistic is shape-memory? A review. Polymer 217, 123440 (2021)

    Article  Google Scholar 

  59. Singh, H., Singh, S., Prakash, C.: Current trends in biomaterials and bio-manufacturing. In: Prakash, C., Singh, S., Singh, R., Ramakrishna, S., Pabla, B.S., Puri, S., Uddin, M.S. (eds.) Biomanufacturing, pp. 1–34. Springer, Cham (2019)

    Google Scholar 

  60. Poomathi, N., Singh, S., Prakash, C., Subramanian, A., Sahay, R., Cinappan, A., Ramakrishna, S.: 3D printing in tissue engineering: a state-of-the-art review of technologies and biomaterials. Rapid Prototyp. J. (2020). https://doi.org/10.1108/RPJ-08-2018-0217

    Article  Google Scholar 

  61. Dutta, A., Roy, T., Ray, P.G., Rajasekaran, R., Banerjee, M., Chattopadhyay, S., Gupta, S., Dhara, S.: 3D printing: challenges and its prospect in futuristic tissue engineering applications. In: Singh, S., Prakash, C., Singh, R. (eds.) 3D Printing in Biomedical Engineering, pp. 1–22. Springer, Singapore (2020)

    Google Scholar 

  62. Klouda, L.: Thermoresponsive hydrogels in biomedical applications: a seven-year update. Eur. J. Pharm. Biopharm. 97, 338–349 (2015)

    Article  Google Scholar 

  63. Tang, Z., He, C., Tian, H., Ding, J., Hsiao, B.S., Chu, B., Chen, X.: Polymeric nanostructured materials for biomedical applications. Prog. Polym. Sci. 60, 86–128 (2016)

    Article  Google Scholar 

  64. Vauthier, C., Dubernet, C., Fattal, E., Pinto-Alphandary, H., Couvreur, P.: Poly (alkylcyanoacrylates) as biodegradable materials for biomedical applications. Adv. Drug Deliv. Rev. 55(4), 519–548 (2003)

    Article  Google Scholar 

  65. Chan, B.Q., Low, Z.W., Heng, S.J., Chan, S.Y., Owh, C., Loh, X.J.: Recent advances in shape memory soft materials for biomedical applications. ACS Appl. Mater. Interfaces 8(16), 10070–10087 (2016)

    Article  Google Scholar 

  66. Pompe, W., Worch, H., Epple, M., Friess, W., Gelinsky, M., Greil, P., Hempel, U., Scharnweber, D., Schulte, K.J.: Functionally graded materials for biomedical applications. Mater. Sci. Eng. A 362(1–2), 40–60 (2003)

    Article  Google Scholar 

  67. Pawar, R.P., Tekale, S.U., Shisodia, S.U., Totre, J.T., Domb, A.J.: Biomedical applications of poly (lactic acid). Recent Pat. Regen. Med. 4(1), 40–51 (2014)

    Google Scholar 

  68. Vlachopoulos, A., Karlioti, G., Balla, E., Daniilidis, V., Kalamas, T., Stefanidou, M., Bikiaris, N.D., Christodoulou, E., Koumentakou, I., Karavas, E., Bikiaris, D.N.: Poly (lactic acid)-based microparticles for drug delivery applications: an overview of recent advances. Pharmaceutics 14(2), 359 (2022)

    Article  Google Scholar 

  69. Singh, S., Prakash, C., Singh, M., Mann, G.S., Gupta, M.K., Singh, R., Ramakrishna, S.: Poly-lactic-acid: potential material for bio-printing applications. In: Prakash, C., Singh, S., Singh, R., Ramakrishna, S., Pabla, B.S., Puri, S., Uddin, M.S. (eds.) Biomanufacturing, pp. 69–87. Springer, Cham (2019)

    Chapter  Google Scholar 

  70. Singh, S., Singh, G., Prakash, C., Ramakrishna, S., Lamberti, L., Pruncu, C.I.: 3D printed biodegradable composites: an insight into mechanical properties of PLA/chitosan scaffold. Polym. Test. 89, 106722 (2020)

    Article  Google Scholar 

  71. Panayotov, I.V., Orti, V., Cuisinier, F., Yachouh, J.: Polyetheretherketone (PEEK) for medical applications. J. Mater. Sci. Mater. Med. 27(7), 1–1 (2016)

    Article  Google Scholar 

  72. Ma, H., Suonan, A., Zhou, J., Yuan, Q., Liu, L., Zhao, X., Lou, X., Yang, C., Li, D., Zhang, Y.G.: PEEK (Polyether-ether-ketone) and its composite materials in orthopedic implantation. Arab. J. Chem. 14(3), 102977 (2021)

    Article  Google Scholar 

  73. Singh, S., Prakash, C., Wang, H., Yu, X.F., Ramakrishna, S.: Plasma treatment of polyether-ether-ketone: a means of obtaining desirable biomedical characteristics. Eur. Polym. J. 118, 561–577 (2019)

    Article  Google Scholar 

  74. Singh, S., Prakash, C., Ramakrishna, S.: 3D printing of polyether-ether-ketone for biomedical applications. Eur. Polym. J. 114, 234–248 (2019)

    Article  Google Scholar 

  75. Zhao, Y., Eng, G., Lee, B.W., Radisic, M., Vunjak-Novakovic, G.: Cardiac tissue engineering. In: Principles of Tissue Engineering, pp. 593–616. Academic Press (2020). https://doi.org/10.1016/B978-0-12-818422-6.00033-2

  76. Marques, C.F., Diogo, G.S., Pina, S., Oliveira, J.M., Silva, T.H., Reis, R.L.: Collagen-based bioinks for hard tissue engineering applications: a comprehensive review. J. Mater. Sci. Mater. Med. 30(3), 1–2 (2019)

    Article  Google Scholar 

  77. Polycarbonate, https://www.thomasnet.com/articles/plastics-rubber/polycarbonate-medical/ retrieved on 18 Dec 2021

  78. Mei, X., Cheng, K.: Recent development in therapeutic cardiac patches. Front. Cardiovasc. Med. 7, 610364 (2020)

    Article  Google Scholar 

  79. Wekwejt, M., Michalska-Sionkowska, M., Bartmański, M., Nadolska, M., Łukowicz, K., Pałubicka, A., Osyczka, A.M., Zieliński, A.: Influence of several biodegradable components added to pure and nanosilver-doped PMMA bone cements on its biological and mechanical properties. Mater. Sci. Eng. C 117, 111286 (2020)

    Article  Google Scholar 

  80. Abbasian, V., Emadi, R., Kharaziha, M.: Biomimetic nylon 6-baghdadite nanocomposite scaffold for bone tissue engineering. Mater. Sci. Eng. C 109, 110549 (2020)

    Article  Google Scholar 

  81. Ward, M.A., Georgiou, T.K.: Thermoresponsive polymers for biomedical applications. Polymers 3(3), 1215–1242 (2011)

    Article  Google Scholar 

  82. Vasanthan, J., Gurusamy, N., Rajasingh, S., Sigamani, V., Kirankumar, S., Thomas, E.L., Rajasingh, J.: Role of human mesenchymal stem cells in regenerative therapy. Cells 10(1), 54 (2020)

    Article  Google Scholar 

  83. Ding, S.L., Liu, X., Zhao, X.Y., Wang, K.T., Xiong, W., Gao, Z.L., Sun, C.Y., Jia, M.X., Li, C., Gu, Q., Zhang, M.Z.: Microcarriers in application for cartilage tissue engineering: Recent progress and challenges. Bioact. Mater. (2022). https://doi.org/10.1016/j.bioactmat.2022.01.033

    Article  Google Scholar 

  84. Bajpai, A.K., Shukla, S.K., Bhanu, S., Kankane, S.: Responsive polymers in controlled drug delivery. Prog. Polym. Sci. 33(11), 1088–1118 (2008)

    Article  Google Scholar 

  85. Mohammed, M.N., Yusoh, K.B., Shariffuddin, J.H.: Poly (N-vinyl caprolactam) thermoresponsive polymer in novel drug delivery systems: a review. Mater. Express 8(1), 21–34 (2018)

    Article  Google Scholar 

  86. Prasad, L.K., Smyth, H.: 3D Printing technologies for drug delivery: a review. Drug Dev. Ind. Pharm. 42(7), 1019–1031 (2016)

    Article  Google Scholar 

  87. Englert, C., Brendel, J.C., Majdanski, T.C., Yildirim, T., Schubert, S., Gottschaldt, M., Windhab, N., Schubert, U.S.: Pharmapolymers in the 21st century: synthetic polymers in drug delivery applications. Prog. Polym. Sci. 87, 107–164 (2018)

    Article  Google Scholar 

  88. Twaites, B.R., de Las Heras Alarcón, C., Lavigne, M., Saulnier, A., Pennadam, S.S., Cunliffe, D., Górecki, D.C., Alexander, C.: Thermoresponsive polymers as gene delivery vectors: cell viability, DNA transport and transfection studies. J. Controll. Release 108(2–3), 472–83 (2005)

    Article  Google Scholar 

  89. Mann, G.S., Singh, L.P., Kumar, P., Singh, S., Prakash, C.: On briefing the surface modifications of polylactic acid: a scope for betterment of biomedical structures. J. Thermoplast. Compos. Mater. 34(7), 977–1005 (2021)

    Article  Google Scholar 

  90. Doberenz, F., Zeng, K., Willems, C., Zhang, K., Groth, T.: Thermoresponsive polymers and their biomedical application in tissue engineering–a review. J. Mater. Chem. B 8(4), 607–628 (2020)

    Article  Google Scholar 

  91. Qiao, S., Wang, H.: Temperature-responsive polymers: synthesis, properties, and biomedical applications. Nano Res. 11(10), 5400–5423 (2018)

    Article  Google Scholar 

  92. Babbar, A., Jain, V., Gupta, D., Singh, S., Prakash, C., Pruncu, C.: Biomaterials and fabrication methods of scaffolds for tissue engineering applications. In: Singh, S., Prakash, C., Singh, R. (eds.) 3D Printing in Biomedical Engineering, pp. 167–186. Springer, Singapore (2020)

    Chapter  Google Scholar 

  93. Abbasian, M., Massoumi, B., Mohammad-Rezaei, R., Samadian, H., Jaymand, M.: Scaffolding polymeric biomaterials: are naturally occurring biological macromolecules more appropriate for tissue engineering? Int. J. Biol. Macromol. 134, 673–694 (2019)

    Article  Google Scholar 

  94. Kumar, R., Singh, R., Kumar, V., Kumar, P.: On PLA–ZnO composite matrix for shape memory effect. In: 4D Printing, pp. 147–160. Elsevier (2022). https://doi.org/10.1016/B978-0-12-823725-0.00008-4

  95. Singh, G., Singh, S., Prakash, C., Kumar, R., Kumar, R., Ramakrishna, S.: Characterization of three-dimensional printed thermal-stimulus polylactic acid-hydroxyapatite-based shape memory scaffolds. Polym. Compos. 41(9), 3871–3891 (2020)

    Article  Google Scholar 

  96. Singh, S., Singh, M., Prakash, C., Gupta, M.K., Mia, M., Singh, R.: Optimization and reliability analysis to improve surface quality and mechanical characteristics of heat-treated fused filament fabricated parts. Int. J. Adv. Manuf. Technol. 102(5), 1521–1536 (2019)

    Article  Google Scholar 

  97. Sahafnejad-Mohammadi, I., Karamimoghadam, M., Zolfagharian, A., Akrami, M., Bodaghi, M.: 4D printing technology in medical engineering: a narrative review. J. Braz. Soc. Mech. Sci. Eng. 44(6), 1–26 (2022)

    Article  Google Scholar 

  98. Nkomo, N.: A review of 4D printing technology and future trends. In: 11th South African Conference on Computational and Applied Mechanics. 2018 Sep

  99. Kuang, X., Chen, K., Dunn, C.K., Wu, J., Li, V.C., Qi, H.J.: 3D printing of highly stretchable, shape-memory, and self-healing elastomer toward novel 4D printing. ACS Appl. Mater. Interfaces 10(8), 7381–7388 (2018)

    Article  Google Scholar 

  100. 4D printing—the future Technology, https://www.futurebridge.com/industry/perspectives-mobility/4d-printing-the-technology-of-the-future/#:~:text=4D%20Printing%20%E2%80%93%20Definition,electricity%2C%20magnetic%20field%2C%20etc./ retrieved on 1 July, 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranvijay Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, V., Singh, R., Kumar, R. et al. 4D printing of thermoresponsive materials: a state-of-the-art review and prospective applications. Int J Interact Des Manuf 17, 2075–2094 (2023). https://doi.org/10.1007/s12008-022-01018-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-022-01018-5

Keywords

Navigation