Skip to main content
Log in

Abstract

Since its introduction, the 3D printing technology has been widely used in fields such as design, rapid prototyping, and biomedical devices, owing to its advantages of inexpensive, facile embodiment of computer 3D files into physical objects. Later, 4D printing was introduced by adding the temporal dimension to 3D. Stimuli such as heat, humidity, pH, and light trigger the actuation of printed objects without motors or wires. Smart materials that respond to external stimuli are good candidates for 4D printing. In this paper, we review the recent research on 4D printing, and categorize it with respect to the activating stimuli. The mechanical properties of 4D printing materials are mentioned as well. Finally, the future of 4D printing is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mota, C., Puppi, D., Chiellini, F., and Chiellini, E., “Additive Manufacturing Techniques for the Production of Tissue Engineering Constructs,” Journal of Tissue Engineering and Regenerative Medicine, Vol. 9, No. 3, pp. 174–190, 2015.

    Article  Google Scholar 

  2. Chua, Z. Y., Ahn, I. H., and Moon, S. K., “Process Monitoring and Inspection Systems in Metal Additive Manufacturing: Status and Applications,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 4, No. 2, pp. 235–245, 2017.

    Article  Google Scholar 

  3. Ko, H., Moon, S. K., and Hwang, J., “Design for Additive Manufacturing in Customized Products,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 11, pp. 2369–2375, 2015.

    Article  Google Scholar 

  4. Kang, H. S., Lee, J. Y., Choi, S., Kim, H., Park, J. H., et al., “Smart Manufacturing: Past Research, Present Findings, and Future Directions,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 3, No. 1, pp. 111–128, 2016.

    Article  Google Scholar 

  5. Yap, Y. and Yeong, W., “Additive Manufacture of Fashion and Jewellery Products: A Mini Review: This Paper Provides an Insight into the Future of 3D Printing Industries for Fashion and Jewellery Products,” Virtual and Physical Prototyping, Vol. 9, No. 3, pp. 195–201, 2014.

    Article  Google Scholar 

  6. Zarek, M., Layani, M., Eliazar, S., Mansour, N., Cooperstein, I., et al., “4D Printing Shape Memory Polymers for Dynamic Jewellery and Fashionwear,” Virtual and Physical Prototyping, Vol. 11, No. 4, pp. 263–270, 2016.

    Article  Google Scholar 

  7. Eujin Pei, D., Pei, E., Shen, J., and Watling, J., “Direct 3D Printing of Polymers onto Textiles: Experimental Studies and Applications,” Rapid Prototyping Journal, Vol. 21, No. 5, pp. 556–571, 2015.

    Article  Google Scholar 

  8. Kadimisetty, K., Mosa, I. M., Malla, S., Satterwhite-Warden, J. E., Kuhns, T. M., et al., “3D-Printed Supercapacitor-Powered Electrochemiluminescent Protein Immunoarray,” Biosensors and Bioelectronics, Vol. 77, pp. 188–193, 2016.

    Article  Google Scholar 

  9. Jiang, Y. and Wang, Q., “Highly-Stretchable 3D-Architected Mechanical Metamaterials,” Scientific Reports, Vol. 6, Paper No. 34147, 2016.

    Google Scholar 

  10. Vatani, M., Lu, Y., Engeberg, E. D., and Choi, J.-W., “Combined 3D Printing Technologies and Material for Fabrication of Tactile Sensors,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 7, pp. 1375–1383, 2015.

    Article  Google Scholar 

  11. Stanton, M., Trichet-Paredes, C., and Sanchez, S., “Applications of Three-Dimensional (3D) Printing for Microswimmers and Bio-Hybrid Robotics,” Lab on a Chip, Vol. 15, No. 7, pp. 1634–1637, 2015.

    Article  Google Scholar 

  12. Bose, S., Vahabzadeh, S., and Bandyopadhyay, A., “Bone Tissue Engineering Using 3D Printing,” Materials Today, Vol. 16, No. 12, pp. 496–504, 2013.

    Article  Google Scholar 

  13. Dunn, J. C., Chan, W.-Y., Cristini, V., Kim, J., Lowengrub, J., et al., “Analysis of Cell Growth in Three-Dimensional Scaffolds,” Tissue Engineering, Vol. 12, No. 4, pp. 705–716, 2006.

    Article  Google Scholar 

  14. An, J., Teoh, J. E. M., Suntornnond, R., and Chua, C. K., “Design and 3D Printing of Scaffolds and Tissues,” Engineering, Vol. 1, No. 2, pp. 261–268, 2015.

    Article  Google Scholar 

  15. Chia, H. N. and Wu, B. M., “Recent Advances in 3D Printing of Biomaterials,” Journal of Biological Engineering, Vol. 9, No. 1, p. 4, 2015.

    Article  Google Scholar 

  16. Shida Miao, W. Z., Castro, N. J., Nowicki, M., Zhou, X., Cui, H., et al., “4D Printing Smart Biomedical Scaffolds with Novel Soybean Oil Epoxidized Acrylate,” Scientific Reports, Vol. 6, Paper No. 27226, 2016.

    Google Scholar 

  17. Miao, S., Zhu, W., Castro, N. J., Leng, J., and Zhang, L. G., “Four-Dimensional Printing Hierarchy Scaffolds with Highly Biocompatible Smart Polymers for Tissue Engineering Applications,” Tissue Engineering Part C: Methods, Vol. 22, No. 10, pp. 952–963, 2016.

    Article  Google Scholar 

  18. Yoo, D.-J. and Kim, K.-H., “An Advanced Multi-Morphology Porous Scaffold Design Method Using Volumetric Distance Field and Beta Growth Function,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 9, pp. 2021–2032, 2015.

    Article  Google Scholar 

  19. Liu, Y., Genzer, J., and Dickey, M. D., ““2D or Not 2D”: Shape-Programming Polymer Sheets,” Progress in Polymer Science, Vol. 52, pp. 79–106, 2016.

    Article  Google Scholar 

  20. Yang, W. G., Lu, H., Huang, W. M., Qi, H. J., Wu, X. L., et al., “Advanced Shape Memory Technology to Reshape Product Design, Manufacturing and Recycling,” Polymers, Vol. 6, No. 8, pp. 2287–2308, 2014.

    Article  Google Scholar 

  21. Breger, J. C., Yoon, C., Xiao, R., Kwag, H. R., Wang, M. O., et al., “Self-Folding Thermo-Magnetically Responsive Soft Microgrippers,” ACS Applied Materials & Interfaces, Vol. 7, No. 5, pp. 3398–3405, 2015.

    Article  Google Scholar 

  22. Lee, Y., Lee, H., Hwang, T., Lee, J.-G., and Cho, M., “Sequential Folding Using Light-Activated Polystyrene Sheet,” Scientific Reports, Vol. 5, Paper No. 16544, 2015.

    Google Scholar 

  23. Tibbits, S., “4D Printing: Multi-Material Shape Change,” Architectural Design, Vol. 84, No. 1, pp. 116–121, 2014.

    Article  Google Scholar 

  24. Kwok, T.-H., Wang, C. C., Deng, D., Zhang, Y., and Chen, Y., “Four-Dimensional Printing for Freeform Surfaces: Design Optimization of Origami and Kirigami Structures,” Journal of Mechanical Design, Vol. 137, No. 11, Paepr No. 111413, 2015.

    Google Scholar 

  25. Zhou, Y., Huang, W. M., Kang, S. F., Wu, X. L., Lu, H. B., et al., “From 3D to 4D Printing: Approaches and Typical Applications,” Journal of Mechanical Science and Technology, Vol. 29, No. 10, pp. 4281–4288, 2015.

    Article  Google Scholar 

  26. Leist, S. K. and Zhou, J., “Current Status of 4D Printing Technology and the Potential of Light-Reactive Smart Materials as 4D Printable Materials,” Virtual and Physical Prototyping, Vol. 11, No. 4, pp. 249–262, 2016.

    Article  Google Scholar 

  27. Felton, S. M., Tolley, M. T., Shin, B., Onal, C. D., Demaine, E. D., et al., “Self-Folding with Shape Memory Composites,” Soft Matter, Vol. 9, No. 32, pp. 7688–7694, 2013.

    Article  Google Scholar 

  28. Cock, F., Cuadri, A., García-Morales, M., and Partal, P., “Thermal, Rheological and Microstructural Characterisation of Commercial Biodegradable Polyesters,” Polymer Testing, Vol. 32, No. 4, pp. 716–723, 2013.

    Article  Google Scholar 

  29. Ivanova, O., Elliott, A., Campbell, T., and Williams, C., “Unclonable Security Features for Additive Manufacturing,” Additive Manufacturing, Vol. 1, pp. 24–31, 2014.

    Article  Google Scholar 

  30. Liu, X., Zheng, Y., Peurifoy, S. R., Kothari, E. A., and Braunschweig, A. B., “Optimization of 4D Polymer Printing within a Massively Parallel Flow-Through Photochemical Microreactor,” Polymer Chemistry, Vol. 7, No. 19, pp. 3229–3235, 2016.

    Article  Google Scholar 

  31. Quan, Z., Wu, A., Keefe, M., Qin, X., Yu, J., et al., “Additive Manufacturing of Multi-Directional Preforms for Composites: Opportunities and Challenges,” Materials Today, Vol. 18, No. 9, pp. 503–512, 2015.

    Article  Google Scholar 

  32. Zolfagharian, A., Kouzani, A. Z., Khoo, S. Y., Moghadam, A. A. A., Gibson, I., et al., “Evolution of 3D Printed Soft Actuators,” Sensors and Actuators A: Physical, Vol. 250, pp. 258–272, 2016.

    Article  Google Scholar 

  33. Huang, W., Ding, Z., Wang, C., Wei, J., Zhao, Y., et al., “Shape Memory Materials,” Materials Today, Vol. 13, No. 7, pp. 54–61, 2010.

    Article  Google Scholar 

  34. Sutar, R. L., Levin, E., Butilkov, D., Goldberg, I., Reany, O., et al., “A Light-Activated Olefin Metathesis Catalyst Equipped with a Chromatic Orthogonal Self-Destruct Function,” Angewandte Chemie, Vol. 128, No. 2, pp. 774–777, 2016.

    Article  Google Scholar 

  35. Zhang, X., Yang, P., Dai, Y., Ma, P. A., Li, X., et al., “Multifunctional Up-Converting Nanocomposites with Smart Polymer Brushes Gated Mesopores for Cell Imaging and Thermo/Ph Dual-Responsive Drug Controlled Release,” Advanced Functional Materials, Vol. 23, No. 33, pp. 4067–4078, 2013.

    Article  Google Scholar 

  36. Ge, Q., Qi, H. J., and Dunn, M. L., “Active Materials by Four-Dimension Printing,” Applied Physics Letters, Vol. 103, No. 13, Paper No. 131901, 2013.

    Google Scholar 

  37. Ge, Q., Dunn, C. K., Qi, H. J., and Dunn, M. L., “Active Origami by 4D Printing,” Smart Materials and Structures, Vol. 23, No. 9, Paper No. 094007, 2014.

    Google Scholar 

  38. Wu, J., Yuan, C., Ding, Z., Isakov, M., Mao, Y., et al., “Multi-Shape Active Composites by 3D Printing of Digital Shape Memory Polymers,” Scientific Reports, Vol. 6, Article No. 2422, 2016.

    Google Scholar 

  39. Yu, K., Ritchie, A., Mao, Y., Dunn, M. L., and Qi, H. J., “Controlled Sequential Shape Changing Components by 3D Printing of Shape Memory Polymer Multimaterials,” Procedia IUTAM, Vol. 12, pp. 193–203, 2015.

    Article  Google Scholar 

  40. Mao, Y., Yu, K., Isakov, M. S., Wu, J., Dunn, M. L., et al., “Sequential Self-Folding Structures by 3D Printed Digital Shape Memory Polymers,” Scientific Reports, Vol. 5, Paper No. 13616, 2015.

    Google Scholar 

  41. Bakarich, S. E., Gorkin, R., and Spinks, G. M., “4D Printing with Mechanically Robust, Thermally Actuating Hydrogels,” Macromolecular Rapid Communications, Vol. 36, No. 12, pp. 1211–1217, 2015.

    Article  Google Scholar 

  42. Bodaghi, M., Damanpack, A., and Liao, W., “Self-Expanding/Shrinking Structures by 4D Printing,” Smart Materials and Structures, Vol. 25, No. 10, Paper No. 105034, 2016.

    Google Scholar 

  43. Zhang, Q., Yan, D., Zhang, K., and Hu, G., “Pattern Transformation of Heat-Shrinkable Polymer by Three-Dimensional (3D) Printing Technique,” Scientific Reports, Vol. 5, Article No. 8936, 2015.

    Google Scholar 

  44. Zhang, Q., Zhang, K., and Hu, G., “Smart Three-Dimensional Lightweight Structure Triggered from a Thin Composite Sheet Via 3D Printing Technique,” Scientific Reports, Vol. 6, Paper No. 22431, 2016.

    Google Scholar 

  45. Ge, Q., Sakhaei, A. H., Lee, H., Dunn, C. K., Fang, N. X., et al., “Multimaterial 4D Printing with Tailorable Shape Memory Polymers,” Scientific Reports, Vol. 6, Paper No. 31110, 2016.

    Google Scholar 

  46. Baghani, M., Naghdabadi, R., and Arghavani, J., “A Semi-Analytical Study on Helical Springs Made of Shape Memory Polymer,” Smart Materials and Structures, Vol. 21, No. 4, Paper No. 045014, 2012.

    Google Scholar 

  47. Westbrook, K. K., Mather, P. T., Parakh, V., Dunn, M. L., Ge, Q., et al., “Two-Way Reversible Shape Memory Effects in a Free-Standing Polymer Composite,” Smart Materials and Structures, Vol. 20, No. 6, Paper No. 065010, 2011.

    Google Scholar 

  48. Meng, H. and Li, G., “A Review of Stimuli-Responsive Shape Memory Polymer Composites,” Polymer, Vol. 54, No. 9, pp. 2199–2221, 2013.

    Article  Google Scholar 

  49. Raviv, D., Zhao, W., McKnelly, C., Papadopoulou, A., Kadambi, A., et al., “Active Printed Materials for Complex Self-Evolving Deformations,” Scientific Reports, Vol. 4, Article No. 7422, 2014.

    Google Scholar 

  50. Kokkinis, D., Schaffner, M., and Studart, A. R., “Multimaterial Magnetically Assisted 3D Printing of Composite Materials,” Nature Communications, Vol. 6, Article No. 8643, 2015.

    Google Scholar 

  51. Le Duigou, A., Castro, M., Bevan, R., and Martin, N., “3D Printing of Wood Fibre Biocomposites: From Mechanical to Actuation Functionality,” Materials & Design, Vol. 96, pp. 106–114, 2016.

    Article  Google Scholar 

  52. Dickey, M. D., “Hydrogel Composites: Shaped After Print,” Nature Materials, Vol. 15, No. 4, pp. 379–380, 2016.

    Article  Google Scholar 

  53. Bootsma, K., Fitzgerald, M. M., Free, B., Dimbath, E., Conjerti, J., et al., “3D Printing of an Interpenetrating Network Hydrogel Material with Tunable Viscoelastic Properties,” Journal of the Mechanical Behavior of Biomedical Materials, Vol. 70, pp. 84–94, 2017.

    Article  Google Scholar 

  54. Bakarich, S. E., Gorkin, R., Naficy, S., Gately, R., and Spinks, G. M., “3D/4D Printing Hydrogel Composites: A Pathway to Functional Devices,” MRS Advances, Vol. 1, No. 8, pp. 521–526, 2016.

    Article  Google Scholar 

  55. Gladman, A. S., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L., and Lewis, J. A., “Biomimetic 4D Printing,” Nature Materials, Vol. 15, No. 4, pp. 413–418, 2016.

    Article  Google Scholar 

  56. Naficy, S., Gately, R., Gorkin, R., Xin, H., and Spinks, G. M., “4D Printing of Reversible Shape Morphing Hydrogel Structures,” Macromolecular Materials and Engineering, Vol. 302, No. 1, DOI: 10.1002/mame.201600212, 2017.

    Google Scholar 

  57. Au, A. K., Bhattacharjee, N., Horowitz, L. F., Chang, T. C., and Folch, A., “3D-Printed Microfluidic Automation,” Lab on a Chip, Vol. 15, No. 8, pp. 1934–1941, 2015.

    Article  Google Scholar 

  58. Nadgorny, M., Xiao, Z., Chen, C., and Connal, L. A., “Three-Dimensional Printing of pH-Responsive and Functional Polymers on an Affordable Desktop Printer,” ACS Applied Materials & Interfaces, Vol. 8, No. 42, pp. 28946–28954, 2016.

    Article  Google Scholar 

  59. Ionita, C. N., Mokin, M., Varble, N., Bednarek, D. R., Xiang, J., et al., “Challenges and Limitations of Patient-Specific Vascular Phantom Fabrication Using 3D Polyjet Printing,” Proc. of the International Society for Optics and Photonics in SPIE Medical Imaging, DOI:10.1117/12.2042266, 2014.

    Google Scholar 

  60. Shaffer, S., Yang, K., Vargas, J., Di Prima, M. A., and Voit, W., “On Reducing Anisotropy in 3D Printed Polymers Via Ionizing Radiation,” Polymer, Vol. 55, No. 23, pp. 5969–5979, 2014.

    Article  Google Scholar 

  61. Wang, X., Jiang, M., Zhou, Z., Gou, J., and Hui, D., “3D Printing of Polymer Matrix Composites: A Review and Prospective,” Composites Part B: Engineering, Vol. 110, pp. 442–458, 2017.

    Article  Google Scholar 

  62. Chu, W.-S., Kim, M.-S., Jang, K.-H., Song, J.-H., Rodrigue, H., et al., “From Design for Manufacturing (DFM) to Manufacturing for Design (MFD) Via Hybrid Manufacturing and Smart Factory: A Review and Perspective of Paradigm Shift,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 3, No. 2, pp. 209–222, 2016.

    Article  Google Scholar 

  63. Kelbassa, I., Wohlers, T., and Caffrey, T., “Quo Vadis, Laser Additive Manufacturing?” Journal of Laser Applications, Vol. 24, No. 5, Paper No. 050101, 2012.

    Google Scholar 

  64. Ahn, D.-G., “Direct Metal Additive Manufacturing Processes and their Sustainable Applications for Green Technology: A Review,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 3, No. 4, pp. 381–395, 2016.

    Article  Google Scholar 

  65. Vaezi, M., Seitz, H., and Yang, S., “A Review on 3D Micro-Additive Manufacturing Technologies,” The International Journal of Advanced Manufacturing Technology, Vol. 67, Nos. 5-8, pp. 1721–1754, 2013.

    Article  Google Scholar 

  66. Ahn, S.-H., Montero, M., Odell, D., Roundy, S., and Wright, P. K., “Anisotropic Material Properties of Fused Deposition Modeling ABS,” Rapid Prototyping Journal, Vol. 8, No. 4, pp. 248–257, 2002.

    Article  Google Scholar 

  67. Gao, W., Zhang, Y., Ramanujan, D., Ramani, K., Chen, Y., et al., “The Status, Challenges, and Future of Additive Manufacturing in Engineering,” Computer-Aided Design, Vol. 69, pp. 65–89, 2015.

    Article  Google Scholar 

  68. Choong, Y. Y. C., Maleksaeedi, S., Eng, H., Wei, J., and Su, P.-C., “4D Printing of High Performance Shape Memory Polymer Using Stereolithography,” Materials & Design, Vol. 126, pp. 219–225, 2017.

    Article  Google Scholar 

  69. Gross, B. C., Erkal, J. L., Lockwood, S. Y., Chen, C., and Spence, D. M., “Evaluation of 3D Printing and its Potential Impact on Biotechnology and the Chemical Sciences,” Analytical Chemistry, Vol. 86, No. 7, pp. 3240–3253, 2014.

    Article  Google Scholar 

  70. Gall, K., Yakacki, C. M., Liu, Y., Shandas, R., Willett, N., et al., “Thermomechanics of the Shape Memory Effect in Polymers for Biomedical Applications,” Journal of Biomedical Materials Research Part A, Vol. 73, No. 3, pp. 339–348, 2005.

    Article  Google Scholar 

  71. Monzón, M., Paz, R., Pei, E., Ortega, F., Suárez, L., et al., “4D Printing: Processability and Measurement of Recovery Force in Shape Memory Polymers,” The International Journal of Advanced Manufacturing Technology, Vol. 89, Nos. 5-8, pp. 1827–1836, 2017.

    Article  Google Scholar 

  72. Kim, J. H., Kang, T. J., and Yu, W.-R., “Thermo-Mechanical Constitutive Modeling of Shape Memory Polyurethanes Using a Phenomenological Approach,” International Journal of Plasticity, Vol. 26, No. 2, pp. 204–218, 2010.

    Article  MATH  Google Scholar 

  73. Ramakrishna, S., Mayer, J., Wintermantel, E., and Leong, K. W., “Biomedical Applications of Polymer-Composite Materials: A Review,” Composites Science and Technology, Vol. 61, No. 9, pp. 1189–1224, 2001.

    Article  Google Scholar 

  74. Zarek, M., Layani, M., Cooperstein, I., Sachyani, E., Cohn, D., et al., “3D Printing of Shape Memory Polymers for Flexible Electronic Devices,” Advanced Materials, Vol. 28, No. 22, pp. 4449–4454, 2016.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Eun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, DG., Kim, TH. & Kim, DE. Review of 4D printing materials and their properties. Int. J. of Precis. Eng. and Manuf.-Green Tech. 4, 349–357 (2017). https://doi.org/10.1007/s40684-017-0040-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-017-0040-z

Keywords

Navigation