Skip to main content

Advertisement

Log in

Selective laser sintering in biomedical engineering

  • Review Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Selective laser sintering (SLS) is a solid freeform fabrication technique, developed by Carl Deckard for his master’s thesis at the University of Texas, patented in 1989. SLS manufacturing is a technique that produces physical models through a selective solidification of a variety of fine powders. SLS technology is getting a great amount of attention in the clinical field. In this paper the characteristics features of SLS and the materials that have been developed for are reviewed together with a discussion on the principles of the above-mentioned manufacturing technique. The applications of SLS in tissue engineering, and at-large in the biomedical field, are reviewed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anestiev LA, Froyen L (1999) Model of primary rearrangement processes at liquid phase sintering and selective laser sintering due to biparticle interactions. J Appl Phys 86:4008–4017

    Article  CAS  Google Scholar 

  2. Bertrand P, Bayle F, Combe C, Goeuriot P, Smurov I (2007) Ceramic components manufacturing by selective laser sintering. Appl Surf Sci 254(4):989–992

    Article  CAS  Google Scholar 

  3. Berzins M, Childs THC, Ryder GR (1996) The selective laser sintering of polycarbonate. CIRP Ann Manuf Technol 45(1):187–190

    Article  Google Scholar 

  4. Bugeda G, Cervera M, Lombera G (1999) Numerical prediction of temperature and density distributions in selective laser sintering processes. Rapid Prototyp J 5:21–26

    Article  Google Scholar 

  5. Bukharova TB, Antonov EN, Popov VK, Fatkhudinov TK, Popova AV, Volkov AV et al (2010) Biocompatibility of tissue engineering constructions from porous polylactide carriers obtained by the method of selective laser sintering and bone marrow-derived multipotent stromal cells. Bull Exp Biol Med 149(1):148–153

    Article  PubMed  CAS  Google Scholar 

  6. Cahill S, Lohfeld S, McHugh PE (2009) Finite element predictions compared to experimental results for the effective modulus of bone tissue engineering scaffolds fabricated by selective laser sintering. J Mater Sci Mater Med 20:1255–1262

    Article  PubMed  CAS  Google Scholar 

  7. Cheah CM, Leong KF, Chua CK, Low KH, Quek HS (2002) Characterization of microfeatures in selective laser sintered drug delivery devices. Proc Inst Mech Eng H 216(6):369–383

    Article  PubMed  CAS  Google Scholar 

  8. Choi KH, Kim HC, Doh YH, Kim DS (2009) Novel scan path generation method based on area division for SFFS. J Mech Sci Technol 23(4):1102–1111

    Article  Google Scholar 

  9. Chow LK, Cheung LK (2007) The usefulness of stereomodels in maxillofacial surgical management. J Oral Maxillofac Surg 65:2260–2268

    Article  PubMed  Google Scholar 

  10. Chua CK, Leong KF, Tan KH, Wiria FE, Cheah CM (2004) Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol/hydroxyapatite biocomposite for craniofacial and joint defects. J Mater Sci Mater Med 15(10):1113–1121

    Article  PubMed  CAS  Google Scholar 

  11. Ciardelli G, Chiono V, Vozzi G, Pracella M, Ahluwalia A, Barbani N et al (2005) Blends of poly-(epsilon-caprolactone) and polysaccharides in tissue engineering applications. Biomacromolecules 6(4):1961–1976

    Article  PubMed  CAS  Google Scholar 

  12. Ciocca L, De Crescenzio F, Fantini M, Scotti R (2010) Rehabilitation of the nose using CAD/CAM and rapid prototyping technology after ablative surgery of squamous cell carcinoma: a pilot clinical report. Int J Oral Maxillofac Implants 25(4):808–812

    PubMed  Google Scholar 

  13. Ciocca L, Fantini M, De Crescenzio F, Corinaldesi G, Scotti R (2011) Direct metal laser sintering (DMLS) of a customized titanium mesh for prosthetically guided bone regeneration of atrophic maxillary arches. Med Biol Eng Comput 49:1347–1352

    Article  PubMed  CAS  Google Scholar 

  14. Cohen A, Laviv A, Berman P, Nashef R, Abu-Tair J (2009) Mandibular reconstruction using stereolithographic 3-dimensional printing modeling technology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108:661–666

    Article  PubMed  Google Scholar 

  15. Deshmukh TR, Kuthe AM, Vaibhav B (2010) Preplanning and simulation of surgery using rapid modelling. J Med Eng Technol 34(4):291–294

    Article  PubMed  CAS  Google Scholar 

  16. Drummer D, Rietzel D, Kühnlein F (2010) Development of a characterization approach for the sintering behavior of new thermoplastics for selective laser sintering. Phys Proced 5(Part B):533–542

    Article  CAS  Google Scholar 

  17. Duan B, Wang M (2010) Customized Ca–P/PHBV nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factor. J R Soc Interface 7(5):S615–S629

    Article  PubMed  CAS  Google Scholar 

  18. Duan B, Wang M, Zhou WY, Cheung WL, Li ZY, Lu WW (2010) Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater 6(12):4495–4505

    Article  PubMed  CAS  Google Scholar 

  19. Duan B, Cheung WL, Wang M (2011) Optimized fabrication of Ca–P/PHBV nanocomposite scaffolds via selective laser sintering for bone tissue engineering. Biofabrication 3(1):015001

    Article  PubMed  Google Scholar 

  20. Dupin S, Lame O, Barrès C, Charmeau JI (2012) Microstructural origin of physical and mechanical properties of polyamide 12 processed by laser sintering. Eur Polym J 48(9):1611–1621

    Article  CAS  Google Scholar 

  21. Dyson JA, Genever PG, Dalgarno KW, Wood DJ (2007) Development of custom-built bone scaffolds using mesenchymal stem cells and apatite–wollastonite glass–ceramics. Tissue Eng 13(12):2891–2901

    Article  PubMed  CAS  Google Scholar 

  22. EOS Press (2011) EOS shows potential of PEEK for use in Laser-Sintered Craniofacial Implants at PD&M/MD&M West. EOS Press Releases. http://www.eos.info/en/news-events/press-releases.html. Accessed 3 Feb 2011

  23. Eosoly S, Brabazon D, Lohfeld S, Looney L (2010) Selective laser sintering of hydroxyapatite/poly-epsilon-caprolactone scaffolds. Acta Biomater 6(7):2511–2517

    Article  PubMed  CAS  Google Scholar 

  24. Erben C, Vitt KD, Wulf J (2000) First statistical analysis of data collected in the Phidias validation study of stereolithography models. Phidias Newsl 5:6–7

    Google Scholar 

  25. Erben C, Vitt KD, Wulf J (2002) The Phidias validation study of stereolithographic models. Phidias Newsl 8:15–16

    Google Scholar 

  26. Eshraghi S, Das S (2010) Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomater 6(7):2467–2476

    Article  PubMed  CAS  Google Scholar 

  27. Feng Z, Zhao J, Zhou L, Dong Y, Zhao Y (2009) Modified animal model and computer-assisted approach for dentoalveolar distraction osteogenesis to reconstruct unilateral maxillectomy defect. J Oral Maxillofac Surg 67(10):2266–2274

    Article  PubMed  Google Scholar 

  28. Feng Z, Dong Y, Zhao Y, Bai S, Zhou B, Bi Y et al (2010) Computer-assisted technique for the design and manufacture of realistic facial prostheses. Br J Oral Maxillofac Surg 48(2):105–109

    Article  PubMed  Google Scholar 

  29. Fisher P, Karapatis N, Romano V, Weber HP (2002) A model for the interaction of near infrared pulsed laser with metal powders in selective laser sintering. Appl Phys A 74(4):467–474

    Article  Google Scholar 

  30. Goodridge RD, Dalgarno KW, Wood DJ (2006) Indirect selective laser sintering of an apatite–mullite glass–ceramic for potential use in bone replacement applications. Proc Inst Mech Eng H 220(1):57–68

    Article  PubMed  CAS  Google Scholar 

  31. Gusarova AV, Laouib T, Froyenc L, Titov VI (2003) Contact thermal conductivity of a powder bed in selective laser sintering. Int J Heat Mass Transf 46(6):1103–1109

    Article  Google Scholar 

  32. Hao L, Savalani MM, Zhang Y, Tanner KE, Harris RA (2006) Selective laser sintering of hydroxyapatite reinforced polyethylene composites for bioactive implants and tissue scaffold development. Proc Inst Mech Eng H 220(4):521–531

    Article  PubMed  CAS  Google Scholar 

  33. Hayashi T, Maekawa K, Tamura M, Hanyu K (2005) Selective laser sintering method using titanium powder sheet toward fabrication of porous bone substitutes. JSME Int J [A] 48:369–375

    Article  Google Scholar 

  34. Huang H, Oizumi S, Kojima N, Niino T, Sakai Y (2007) Avidin–biotin binding-based cell seeding and perfusion culture of liver-derived cells in a porous scaffold with a three-dimensional interconnected flow-channel network. Biomaterials 28(26):3815–3823

    Article  PubMed  CAS  Google Scholar 

  35. Hunt JA, Callaghan JT, Sutcliffe CJ, Morgan RH, Halford B, Black RA (2005) The design and production of Co–Cr alloy implants with controlled surface topography by CAD–CAM method and their effects on osseointegration. Biomaterials 26:5890–5897

    Article  PubMed  CAS  Google Scholar 

  36. Hurson C, Tansey A, O’Donnchadha B, Nicholson P, Rice J, McElwain J (2007) Rapid prototyping in the assessment, classification and preoperative planning of acetabular fractures. Injury 38(10):1158–1162

    Article  PubMed  CAS  Google Scholar 

  37. Jones JR, Atwood RC (2009) Quantifying the 3D macrostructure of tissue scaffolds. J Mater Sci Mater Med 20:463–471

    Article  PubMed  CAS  Google Scholar 

  38. Kanczler JM, Mirmalek-Sani SH, Hanley NA, Ivanov AL, Barry JJ, Upton C et al (2009) Biocompatibility and osteogenic potential of human fetal femur-derived cells on surface selective laser sintered scaffolds. Acta Biomater 5(6):2063–2071

    Article  PubMed  CAS  Google Scholar 

  39. Kandis M, Bergman TL (2000) A simulation-based correlation of the density and thermal conductivity of objects produced by laser sintering of polymer powders. J Manuf Sci Eng 122(3):439–444

    Article  Google Scholar 

  40. Kingery WD (1960) Introduction to ceramics. Wiley, New York

    Google Scholar 

  41. Kolan KC, Leu MC, Hilmas GE, Velez M (2012) Effect of material, process parameters, and simulated body fluids on mechanical properties of 13–93 bioactive glass porous constructs made by selective laser sintering. Mech Behav Biomed Mater 9(13C):14–24

    Article  Google Scholar 

  42. Kruth JP, Mercelis P, Van Vaerenbergh J, Froyen L, Rombouts M (2005) Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prot J 11(1):26–36

    Article  Google Scholar 

  43. Kruth JP, Vandenbroucke B, Van Vaerenbergh J, Naert I (2005) Digital manufacturing of biocompatible metal frameworks for complex dental prostheses by means of SLS/SLM. In: Proceedings of VRAP, Leiria, pp 139–146

  44. Kumar S (2010) Selective laser sintering: recent advances. In: Proceedings 4th Pacific international conference on applications of lasers and optics, Wuhan (PRC), 23–25 March 2010, pp 8–16

  45. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  PubMed  CAS  Google Scholar 

  46. Lee G, Barlow JW, Fox WC, Aufdermorte TB (1996) Biocompatibility of SLS-formed calcium phosphate implants. In: Proceedings of solid freeform fabrication symposium, Austin, TX, 12–14 August, pp 15–22

  47. Lee G, Barlow JW (1993) Selective laser sintering of bioceramic materials for implants. In: Proceedings of solid freeform fabrication symposium, Austin, TX, 9–11 August, pp 376–380

  48. Lee SJ, Jang KA, Spangberg LSW, Kim E, Jung Y, Lee CY et al (2006) Three-dimensional visualization of a mandibular first molar with three distal roots using computer-aided rapid prototyping. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 101:668–674

    Article  PubMed  Google Scholar 

  49. Leiggener C, Messo E, Thor A, Zeilhofer HF, Hirsch JM (2009) A selective laser sintering guide for transferring a virtual plan to real time surgery in composite mandibular reconstruction with free fibula osseous flaps. Int J Oral Maxillofac Surg 38(2):187–192

    Article  PubMed  CAS  Google Scholar 

  50. Leong KF, Chua CK, Gui WS (2006) Verani. Building porous biopolymeric microstructures for controlled drug delivery devices using selective laser sintering. Int J Adv Manuf Technol 31:483–489

    Article  Google Scholar 

  51. Ma PX (2004) Scaffolds for tissue fabrication. Mater Today 7(5):30–40

    Article  CAS  Google Scholar 

  52. Marafon PG, Mattos BS, Sabóia AC, Noritomi PY (2010) Dimensional accuracy of computer-aided design/computer-assisted manufactured orbital prostheses. Int J Prosthodont 23(3):271–276

    PubMed  Google Scholar 

  53. Mazzoli A, Germani M, Moriconi G (2007) Application of optical digitizing techniques to evaluate the shape accuracy of anatomical models derived from CT data. J Oral Maxillofac Surg 65(7):1410–1418

    Article  PubMed  Google Scholar 

  54. Mazzoli A, Germani M, Raffaeli R (2009) Direct fabrication through electron beam melting technology of custom cranial implants designed in a PHANToM-based haptic environment. Mater Design 30:3186–3192

    Article  CAS  Google Scholar 

  55. Meakin JR, Shepherd DE, Hukins DW (2004) Short communication: fused deposition models from CT scans. Br J Radiol 77(918):504–507

    Article  PubMed  CAS  Google Scholar 

  56. Melchels FP, Feijen J, Grijpma DW (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials 31(24):6121–6130

    Article  PubMed  CAS  Google Scholar 

  57. Mikos AG, Bao Y, Cima LG, Ingber DE, Vacanti JP, Langer R (1993) Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation. J Biomed Mater Res 27:183–189

    Article  PubMed  CAS  Google Scholar 

  58. Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R, Winslow DN et al (1994) Preparation and characterization of poly(l-lactic acid) foams. Polymer 35:1068–1077

    Article  CAS  Google Scholar 

  59. Mori K, Yamamoto T, Oyama K, Ueno H, Nakao Y, Honma K (2008) Modified three-dimensional skull base model with artificial dura mater, cranial nerves, and venous sinuses for training in skull base surgery: technical note. Neurol Med Chir (Tokyo) 48(12):582–587

    Article  Google Scholar 

  60. Muller A, Krishnan KG, Uhl E, Mast G (2003) The application of rapid prototyping techniques in cranial reconstruction and preoperative planning in neurosurgery. J Craniofac Surg 14(6):899–914

    Article  PubMed  Google Scholar 

  61. Nam YS, Park TG (1999) Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. J Biomed Mater Res 47:8–17

    Article  PubMed  CAS  Google Scholar 

  62. Nam YS, Yoon JJ, Park TG (2000) A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive. J Biomed Mater Res A 53:1–7

    Article  CAS  Google Scholar 

  63. Pattanayak DK, Fukuda A, Matsushita T, Takemoto M, Fujibayashi S, Sasaki N et al (2011) Bioactive Ti metal analogous to human cancellous bone: fabrication by selective laser melting and chemical treatments. Acta Biomater 7(3):1398–1406

    Article  PubMed  CAS  Google Scholar 

  64. Peltola SM, Melchels FP, Grijpma DW, Kellomäki M (2008) A review of rapid prototyping techniques for tissue engineering purposes. Ann Med 40(4):268–280

    Article  PubMed  CAS  Google Scholar 

  65. Petzold R, Zeilhofer HF, Kalender WA (1999) Rapid prototyping technology in medicine—basics and applications. Comput Med Imaging Graph 23:277–284

    Article  PubMed  CAS  Google Scholar 

  66. Pressel T, Max S, Pfeifer R, Ostermeier S, Windhagen H, Hurschler C (2008) A rapid prototyping model for biomechanical evaluation of pelvic osteotomies. Biomed Tech (Berl) 53(2):65–69

    Article  Google Scholar 

  67. Puppi D, Chiellini F, Piras AM, Chiellini E (2010) Polymeric materials for bone and cartilage repair. Prog Polym Sci 35:403–440

    Article  CAS  Google Scholar 

  68. Qian T, Wang Y (2010) Micro/nano-fabrication technologies for cell biology. Med Biol Eng Comput 48:1023–1032

    Article  PubMed  Google Scholar 

  69. Rengier F, Mehndiratta A, von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor HU et al (2010) 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg 5(4):335–341

    Article  PubMed  CAS  Google Scholar 

  70. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431

    Article  PubMed  CAS  Google Scholar 

  71. Rimell JT, Marquis PM (2000) Selective laser sintering of ultra high molecular weight polyethylene for clinical applications. J Biomed Mater Res 53(4):414–420

    Article  PubMed  CAS  Google Scholar 

  72. Robiony M, Salvo I, Costa F, Zerman N, Bazzocchi M, Toso F et al (2007) Virtual reality surgical planning for maxillofacial distraction osteogenesis: the role of reverse engineering rapid prototyping and cooperative work. J Oral Maxillofac Surg 65(6):1198–1208

    Article  PubMed  Google Scholar 

  73. Rogers B, Bosker GW, Crawford RH, Faustini MC, Neptune RR, Walden G et al (2007) Advanced trans-tibial socket fabrication using selective laser sintering. Prosthet Orthot Int 31(1):88–100

    Article  PubMed  Google Scholar 

  74. Sabadin Bertol L, Kindlein W Jr, da Silva FP, Aumund-Kopp C (2010) Medical design: direct metal laser sintering of Ti–6Al–4V. Mater Des 31:3982–3988

    Article  Google Scholar 

  75. Sannomiya EK, Silva JV, Brito AA, Saez DM, Angelieri F, Dalben Gda S (2008) Surgical planning for resection of an ameloblastoma and reconstruction of the mandible using a selective laser sintering 3D biomodel. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 106(1):e36–e40

    Article  PubMed  Google Scholar 

  76. Schmachtenberg E, Schoenfeld M, Seul T (2006) Material optimization of PA12 laser-sintering powder to improve surface quality. In: Antec 2006. Society of Plastic Engineers, Charlotte

  77. Schmidt M, Pohle D, Rechtenwald T (2007) Selective laser sintering of PEEK. CIRP Ann Manuf Technol 56(1):205–208

    Article  Google Scholar 

  78. Shi YS, Li ZC (2004) Effect of the properties of polymer materials on the quality of selective laser sintering parts. Proc Inst Mech Eng L J Mater 218(L3):247–252

    CAS  Google Scholar 

  79. Shi Y, Zhang W, Cheng Y, Huang S (2007) Compound scan mode developed from subarea and contour scan mode for selective laser sintering. Int J Mach Tool Manuf 47:873–883

    Article  Google Scholar 

  80. Simpson RL, Wiria FE, Amis AA, Chua CK, Leong KF, Hansen UN et al (2008) Development of a 95/5 poly(l-lactide-co-glycolide)/hydroxylapatite and beta-tricalcium phosphate scaffold as bone replacement material via selective laser sintering. J Biomed Mater Res B Appl Biomater 84(1):17–25

    PubMed  Google Scholar 

  81. Skalak R, Fox CF (eds) (1988) Tissue engineering. In: Proceedings of a workshop held at Granlibakken, Lake Tahoe, CA, 26–29 February, 1988. Alan Liss, New York

  82. Smith MH, Flanagan CL, Kemppainen JM, Sack JA, Chung H, Das S et al (2007) Computed tomography-based tissue-engineered scaffolds in craniomaxillofacial surgery. Int J Med Robot 3(3):207–216

    Article  PubMed  CAS  Google Scholar 

  83. Strub JR, Dianne Rekow E, Witkowski S (2006) Computer-aided design and fabrication of dental restorations. Current systems and future possibilities. J Am Dent Assoc 137(9):1289–1296

    PubMed  Google Scholar 

  84. Sudarmadji N, Tan JY, Leong KF, Chua CK, Loh YT (2011) Investigation of the mechanical properties and porosity relationships in selective laser-sintered polyhedral for functionally graded scaffolds. Acta Biomater 7(2):530–537

    Article  PubMed  CAS  Google Scholar 

  85. Suzuki M, Hagiwara A, Ogawa Y, Ono H (2007) Rapid-prototyped temporal bone and inner-ear models replicated by adjusting computed tomography thresholds. J Laryngol Otol 121(11):1025–1028

    Article  PubMed  CAS  Google Scholar 

  86. Sykes LM, Parrott AM, Owen CP, Snaddon DR (2004) Applications of rapid prototyping technology in maxillofacial prosthetics. Int J Prosthodont 17(4):454–459

    PubMed  Google Scholar 

  87. Tan KH, Chua CK, Leong KF, Cheah CM, Cheang P, Abu Bakar MS et al (2003) Scaffold development using selective laser sintering of polyetheretherketone–hydroxyapatite biocomposite blends. Biomaterials 24(18):3115–3123

    Article  PubMed  CAS  Google Scholar 

  88. Tan KH, Chua CK, Leong KF, Naing MW, Cheah CM (2005) Fabrication and characterization of three-dimensional poly(ether-ether-ketone)/hydroxyapatite biocomposite scaffolds using laser sintering. Proc Inst Mech Eng H 219(3):183–194

    Article  PubMed  CAS  Google Scholar 

  89. Tan KH, Chua CK, Leong KF, Cheah CM, Gui WS, Tan WS et al (2005) Selective laser sintering of biocompatible polymers for applications in tissue engineering. Biomed Mater Eng 15(1–2):113–124

    PubMed  CAS  Google Scholar 

  90. Thomas RG, John NW, Delieu JM (2010) Augmented reality for anatomical education. J Vis Commun Med 33(1):6–15

    Article  PubMed  Google Scholar 

  91. Traini T, Mangano C, Sammons RL, Mangano F, Macchi A, Piattelli A (2008) Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants. Dent Mater 24(11):1525–1533

    Article  PubMed  CAS  Google Scholar 

  92. Van Cleynenbreugel T, Schrooten J, Van Oosterwyck H, Vander Sloten J (2006) Micro-CT-based screening of biomechanical and structural properties of bone tissue engineering scaffolds. Med Biol Eng Comput 44:517–525

    Article  PubMed  Google Scholar 

  93. Wanibuchi M, Ohtaki M, Fukushima T, Friedman AH, Houkin K (2010) Skull base training and education using an artificial skull model created by selective laser sintering. Acta Neurochir (Wien) 152(6):1055–1059

    Article  Google Scholar 

  94. Webb PA (2000) A review of rapid prototyping (RP) techniques in the medical and biomedical sector. J Med Eng Technol 24(4):149–153

    Article  PubMed  CAS  Google Scholar 

  95. Werner H, dos Santos JR, Fontes R, Gasparetto EL, Daltro PA, Kuroki Y, Domingues RC (2008) The use of rapid prototyping didactic models in the study of fetal malformations. Ultrasound Obstet Gynecol 32(7):955–956

    Article  PubMed  CAS  Google Scholar 

  96. Williams JV, Revington PJ (2010) Novel use of an aerospace selective laser sintering machine for rapid prototyping of an orbital blowout fracture. Int J Oral Maxillofac Surg 39(2):182–184

    Article  PubMed  CAS  Google Scholar 

  97. Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE et al (2005) Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26(23):4817–4827

    Article  PubMed  CAS  Google Scholar 

  98. Winder J, Bibb R (2005) Medical rapid prototyping technologies: state of the art and current limitations for application in oral and maxillofacial surgery. J Oral Maxillofac Surg 63:1006–1015

    Article  PubMed  Google Scholar 

  99. Wiria FE, Leong KF, Chua CK, Liu Y (2007) Poly-epsilon-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomater 3(1):1–12

    Article  PubMed  CAS  Google Scholar 

  100. Wiria FE, Chua CK, Leong KF, Quah ZY, Chandrasekaran M, Lee MW (2008) Improved biocomposite development of poly(vinyl alcohol) and hydroxyapatite for tissue engineering scaffold fabrication using selective laser sintering. J Mater Sci Mater Med 19(3):989–996

    Article  PubMed  CAS  Google Scholar 

  101. Wohlers T (2010) Wohlers Report 2010. Additive manufacturing state of the industry. Wohlers Associates Inc, CO, USA. http://www.wohlersassociates.com/ (online)

  102. Wu G, Zhou B, Bi Y, Zhao Y (2008) Selective laser sintering technology for customized fabrication of facial prostheses. J Prosthet Dent 100(1):56–60

    Article  PubMed  Google Scholar 

  103. Wu G, Bi Y, Zhou B, Zemnick C, Han Y, Kong L et al (2009) Computer-aided design and rapid manufacture of an orbital prosthesis. Int J Prosthodont 22(3):293–295

    PubMed  Google Scholar 

  104. Ye L, Zeng X, Li H, Yi A (2010) Fabrication and biocompatibility of nano non-stoichiometric apatite and poly(ε-caprolactone) composite scaffold by using prototyping controlled process. J Mater Sci Mater Med 21:753–760

    Article  PubMed  CAS  Google Scholar 

  105. Yeong WY, Sudarmadji N, Yu HY, Chua CK, Leong KF, Venkatraman SS et al (2010) Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomater 6(6):2028–2034

    Article  PubMed  CAS  Google Scholar 

  106. Zhong Li W, Zhang MC, Ping Li S, Zhang LT, Huang Y (2009) Application of computer-aided three dimensional skull model with rapid prototyping technique in repair of zygomatico-orbito-maxillary complex fracture. Int J Med Robot Comput Assist Surg 5:158–163

    Article  Google Scholar 

  107. Zhou WY, Lee SH, Wang M, Cheung WL, Ip WY (2008) Selective laser sintering of porous tissue engineering scaffolds from poly(l-lactide)/carbonated hydroxyapatite nanocomposite microspheres. J Mater Sci Mater Med 19(7):2535–2540

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alida Mazzoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazzoli, A. Selective laser sintering in biomedical engineering. Med Biol Eng Comput 51, 245–256 (2013). https://doi.org/10.1007/s11517-012-1001-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-012-1001-x

Keywords

Navigation