Skip to main content

Advertisement

Log in

Tumor-Induced Osteomalacia: an Up-to-Date Review

  • Orphan Diseases (B Manger, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Tumor-induced osteomalacia (TIO) is a paraneoplastic syndrome resulting in renal phosphate wasting and decreased bone mineralization. TIO is usually induced by small, slowly growing tumors of mesenchymal origin (phosphaturic mesenchymal tumor mixed connective tissue variant [PMTMCT]). Nonspecific symptoms including fatigue, bone pain, and musculoskeletal weakness make the diagnosis elusive and often lead to a delay in treatment. The prognosis of TIO is excellent following complete resection of the neoplasm, which leads to the rapid and complete reversal of all symptoms. If the tumor cannot be detected, treatment relies on supplementation with phosphate and active vitamin D compounds. Subsequent radiotherapy in case of incompletely resected tumors or definitive radiotherapy in unresectable tumors is an important treatment option to avoid recurrence or metastasis even though this occurs rarely. Due to the risk of recurrence or late metastases, long-term monitoring is required even in TIO patients diagnosed with a benign tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Drezner MK. Tumor-induced osteomalacia. Rev Endocr Metab Disord. 2001;2(2):175–86.

    Article  CAS  PubMed  Google Scholar 

  2. de Jan Beur SM. Tumor-induced osteomalacia. JAMA: J Am Med Assoc. 2005;294(10):1260–7.

    Article  Google Scholar 

  3. White KE, Larsson TE, Econs MJ. The roles of specific genes implicated as circulating factors involved in normal and disordered phosphate homeostasis: frizzled related protein-4, matrix extracellular phosphoglycoprotein, and fibroblast growth factor 23. Endocr Rev. 2006;27(3):221–41.

    Article  CAS  PubMed  Google Scholar 

  4. Kaul M, Silverberg M, DiCarlo E, et al. Tumor-induced osteomalacia. Clin Rheumatol. 2007;26(9):1575–9.

    Article  PubMed  Google Scholar 

  5. Rendina D, de Filippo G, Tauchmanovà L, et al. Bone turnover and the osteoprotegerin–RANKL pathway in tumor-induced osteomalacia: a longitudinal study of five cases. Calcif Tissue Int. 2009;85(4):293–300.

    Article  CAS  PubMed  Google Scholar 

  6. Carpenter T. The expanding family of hypophosphatemic syndromes. J Bone Miner Metab. 2012;30(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  7. Folpe AL, Fanburg-Smith JC, Billings SD, et al. Most osteomalacia-associated mesenchymal tumors are a single histopathologic entity: an analysis of 32 cases and a comprehensive review of the literature. Am J Surg Pathol. 2004;28 (1).

  8. Woo VL, Landesberg R, Imel EA, et al. Phosphaturic mesenchymal tumor, mixed connective tissue variant, of the mandible: report of a case and review of the literature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108(6):925–32.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Mori Y, Ogasawara T, Motoi T, et al. Tumor-induced osteomalacia associated with a maxillofacial tumor producing fibroblast growth factor 23: report of a case and review of the literature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109(3):e57–63.

    Article  PubMed  Google Scholar 

  10. Chong WH, Molinolo AA, Chen CC, et al. Tumor-induced osteomalacia. Endocr-Relat Cancer. 2011;18(3):R53–77. Worth reading overview about the literature and the differential diagnosis of TIO.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Chong WH, Yavuz S, Patel SM, et al. The importance of whole body imaging in tumor-induced osteomalacia. J Clin Endocrinol Metab. 2011;96(12):3599–600.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Manger B, Schett G. Paraneoplastic syndromes in rheumatology. Nat Rev Rheumatol. 2014;10(11):662–70.

    Article  CAS  PubMed  Google Scholar 

  13. Rowe PSN. The wrickkened pathways of FGF23, MEPE and PHEX. Crit Rev Oral Biol Med. 2004;15(5):264–81.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Imanishi Y, Hashimoto J, Ando W, et al. Matrix extracellular phosphoglycoprotein is expressed in causative tumors of oncogenic osteomalacia. J Bone Miner Metab. 2012;30(1):93–9.

    Article  CAS  PubMed  Google Scholar 

  15. Leaf DE, Pereira RC, Bazari H, et al. Oncogenic osteomalacia due to FGF23-expressing colon adenocarcinoma. J Clin Endocrinol Metab. 2013;98(3):887–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Honda R, Kawabata Y, Ito S, et al. Phosphaturic mesenchymal tumor, mixed connective tissue type, non-phosphaturic variant: report of a case and review of 32 cases from the Japanese published work. J Dermatol. 2014;41(9):845–9. Excellent overview about the recently published literature.

    Article  CAS  PubMed  Google Scholar 

  17. Ledford CK, Zelenski NA, Cardona DM, et al. The phosphaturic mesenchymal tumor: why is definitive diagnosis and curative surgery often delayed? Clin Orthop Relat Res. 2013;471(11):3618–25.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Duet M, Kerkeni S, Sfar R, et al. Clinical impact of somatostatin receptor scintigraphy in the management of tumor-induced osteomalacia. Clin Nucl Med. 2008;33 (11).

  19. Haeusler G, Freilinger M, Dominkus M, et al. Tumor-induced hypophosphatemic rickets in an adolescent boy—clinical presentation, diagnosis, and histological findings in growth plate and muscle tissue. J Clin Endocrinol Metab. 2010;95(10):4511–7.

    Article  CAS  PubMed  Google Scholar 

  20. Houang M, Clarkson A, Sioson L, et al. Phosphaturic mesenchymal tumors show positive staining for somatostatin receptor 2A (SSTR2A). Hum Pathol. 2013;44(12):2711–8.

    Article  CAS  PubMed  Google Scholar 

  21. Hautmann AH, Schroeder J, Wild P, et al. Tumor-induced osteomalacia: increased level of FGF-23 in a patient with a phosphaturic mesenchymal tumor at the tibia expressing periostin. Case Rep Endocrinol. 2014;2014:729387. Interesting case report with new findings in immunohistochemical stainings and review of the recently published literature.

    PubMed Central  PubMed  Google Scholar 

  22. Wilkins GE, Granleese S, Hegele RG, et al. Oncogenic osteomalacia: evidence for a humoral phosphaturic factor. J Clin Endocrinol Metab. 1995;80(5):1628–34.

    CAS  PubMed  Google Scholar 

  23. Shelekhova K, Kazakov D, Hes O, et al. Phosphaturic mesenchymal tumor (mixed connective tissue variant): a case report with spectral analysis. Virchows Arch. 2006;448(2):232–5.

    Article  PubMed  Google Scholar 

  24. Stone MD, Quincey C, Hosking DJ. A neuroendocrine cause of oncogenic osteomalacia. J Pathol. 1992;167(2):181–5.

    Article  CAS  PubMed  Google Scholar 

  25. Malhotra G, Agrawal A, Jambhekar NA, et al. The search for primary tumor in a patient with oncogenic osteomalacia: F-18 FDG PET resolves the conundrum. Clin Nucl Med. 2010;35 (11).

  26. Agrawal K, Bhadada S, Mittal BR, et al. Comparison of 18F-FDG and 68Ga DOTATATE PET/CT in localization of tumor causing oncogenic osteomalacia. Clin Nucl Med. 2015;40(1):e6–e10.

    Article  PubMed  Google Scholar 

  27. Breer S, Brunkhorst T, Beil FT, et al. 68Ga DOTA-TATE PET/CT allows tumor localization in patients with tumor-induced osteomalacia but negative 111In-octreotide SPECT/CT. Bone. 2014;64:222–7.

    Article  CAS  PubMed  Google Scholar 

  28. Fukumoto S. Diagnostic modalities for FGF23-producing tumors in patients with tumor-induced osteomalacia. Endocrinol Metab. 2014;29(2):136–43.

    Article  Google Scholar 

  29. Caudell JJ, Ballo MT, Zagars GK, et al. Radiotherapy in the management of giant cell tumor of bone. Int J Radiat Oncol Biol Phys. 2003;57(1):158–65.

    Article  PubMed  Google Scholar 

  30. Kinoshita Y, Fukumoto S. [Anti-FGF23 antibody therapy for patients with tumor-induced osteomalacia]. Clin Calcium. 2014;24(8):1217–22.

    PubMed  Google Scholar 

  31. Seufert J, Ebert K, Müller J, et al. Octreotide therapy for tumor-induced osteomalacia. N Engl J Med. 2001;345(26):1883–8.

    Article  CAS  PubMed  Google Scholar 

  32. Ogose A, Hotta T, Emura I, et al. Recurrent malignant variant of phosphaturic mesenchymal tumor with oncogenic osteomalacia. Skeletal Radiol. 2001;30(2):99–103.

    Article  CAS  PubMed  Google Scholar 

  33. MORIMOTO T, TAKENAKA S, HASHIMOTO N, et al. Malignant phosphaturic mesenchymal tumor of the pelvis: a report of two cases. Oncol Lett. 2014;8(1):67–71.

    PubMed Central  PubMed  Google Scholar 

  34. Mendenhall WM, Zlotecki RA, Scarborough MT, et al. Giant cell tumor of bone. Am J Clin Oncol. 2006;29 (1).

  35. Tarasova VD, Trepp-Carrasco AG, Thompson R, et al. Successful treatment of tumor-induced osteomalacia due to an intracranial tumor by fractionated stereotactic radiotherapy. J Clinical Endocrinol Metab. 2013.

  36. Feigenberg SJ, Marcus Jr RB, Zlotecki RA, et al. Radiation therapy for giant cell tumors of bone. Clin Orthop Relat Res. 2003;411:207–16.

    Article  PubMed  Google Scholar 

  37. Miszczyk L, Wydmański J, Spindel J. Efficacy of radiotherapy for giant cell tumor of bone: given either postoperatively or as sole treatment. Int J Radiat Oncol Biol Phys. 2001;49(5):1239–42.

    Article  CAS  PubMed  Google Scholar 

  38. Malone S, O’Sullivan B, Catton C, et al. Long-term follow-up of efficacy and safety of megavoltage radiotherapy in high-risk giant cell tumors of bone. Int J Radiat Oncol Biol Phys. 1995;33(3):689–94.

    Article  CAS  PubMed  Google Scholar 

  39. Ruka W, Rutkowski P, Morysiński T, et al. The megavoltage radiation therapy in treatment of patients with advanced or difficult giant cell tumors of bone. Int J Radiat Oncol Biol Phys. 2010;78(2):494–8.

    Article  PubMed  Google Scholar 

  40. Nair MK, Jyothirmayi R. Radiation therapy in the treatment of giant cell tumor of bone. Int J Radiat Oncol Biol Phys. 1999;43(5):1065–9.

    Article  CAS  PubMed  Google Scholar 

  41. Ghia AJ, Allen PK, Mahajan A, et al. Intracranial hemangiopericytoma and the role of radiation therapy: a population based analysis. Neurosurgery. 2013;72(2):203–9.

    Article  PubMed  Google Scholar 

  42. Sonabend AM, Zacharia BE, Goldstein H, et al. The role for adjuvant radiotherapy in the treatment of hemangiopericytoma: a Surveillance, Epidemiology, and End Results analysis. J Neurosurg. 2014;120(2):300–8.

    Article  PubMed  Google Scholar 

  43. Jalali R, Srinivas C, Nadkarni TD, et al. Suprasellar haemangiopericytoma—challenges in diagnosis and treatment. Acta Neurochir (Wien). 2008;150(1):67–71.

    Article  CAS  Google Scholar 

  44. Guthrie BL, Ebersold MJ, Scheithauer BW, et al. Meningeal hemangiopericytoma: histopathological features, treatment, and long-term follow-up of 44 cases. Neurosurgery. 1989;25(4):514–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Anke H. Hautmann, Matthias G. Hautmann, Oliver Kölbl, Wolfgang Herr, and Martin Fleck declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anke H. Hautmann.

Additional information

This article is part of the Topical Collection on Orphan Diseases

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hautmann, A.H., Hautmann, M.G., Kölbl, O. et al. Tumor-Induced Osteomalacia: an Up-to-Date Review. Curr Rheumatol Rep 17, 37 (2015). https://doi.org/10.1007/s11926-015-0512-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-015-0512-5

Keywords

Navigation