Skip to main content

Advertisement

Log in

Matrix extracellular phosphoglycoprotein is expressed in causative tumors of oncogenic osteomalacia

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Oncogenic osteomalacia (OOM), or tumor-induced osteomalacia, is a rare disease characterized by renal phosphate wasting and osteomalacia. It arises due to the secretion of fibroblast growth factor 23 (FGF-23) from causative tumors. Matrix extracellular phosphoglycoprotein (MEPE) is predominantly expressed in odontoblasts, osteoblasts, and osteocytes. Although the presence of MEPE mRNA has been reported in some OOM tumors, little is known about the prevalence of MEPE expression in OOM tumors. In this study, the expression of MEPE and FGF-23 in OOM tumors was investigated at the transcriptional and translational levels. Eleven causative OOM tumors were analyzed by quantitative real-time reverse transcription-polymerase chain reaction and immunohistochemistry for MEPE and FGF-23 expression. Hemangiopericytomas and giant cell tumors, pathological diagnoses that are common in cases of OOM, were obtained from non-osteomalacic patients and analyzed as controls. The gene expression level of FGF23 and MEPE in OOM tumors was 104- and 105-times higher, respectively, than in non-OOM tumors. Immunohistochemical staining revealed that FGF-23 protein was expressed in all OOM tumors, and MEPE was expressed in 10 out of 11 OOM tumors. Thus, MEPE expression was common in OOM tumors, similar to FGF-23. These results indicate that, in addition to the hypophosphatemic effects of FGF-23, MEPE or the MEPE-derived acidic serine aspartate-rich MEPE-associated motif peptide may contribute to decreased bone mineralization in OOM patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Folpe AL, Fanburg-Smith JC, Billings SD, Bisceglia M, Bertoni F et al (2004) Most osteomalacia-associated mesenchymal tumors are a single histopathologic entity: an analysis of 32 cases and a comprehensive review of the literature. Am J Surg Pathol 28:1–30

    Article  PubMed  Google Scholar 

  2. Jonsson KB, Zahradnik R, Larsson T, White KE, Sugimoto T, Imanishi Y, Yamamoto T, Hampson G, Koshiyama H, Ljunggren O, Oba K, Yang IM, Miyauchi A, Econs MJ, Lavigne J, Juppner H (2003) Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N Engl J Med 348:1656–1663

    Article  PubMed  CAS  Google Scholar 

  3. White KE, Jonsson KB, Carn G, Hampson G, Spector TD, Mannstadt M, Lorenz-Depiereux B, Miyauchi A, Yang IM, Ljunggren O, Meitinger T, Strom TM, Juppner H, Econs MJ (2001) The autosomal dominant hypophosphatemic rickets (ADHR) gene is a secreted polypeptide overexpressed by tumors that cause phosphate wasting. J Clin Endocrinol Metab 86:497–500

    Article  PubMed  CAS  Google Scholar 

  4. Yamazaki Y, Okazaki R, Shibata M, Hasegawa Y, Satoh K, Tajima T, Takeuchi Y, Fujita T, Nakahara K, Yamashita T, Fukumoto S (2002) Increased circulatory level of biologically active full-length FGF-23 in patients with hypophosphatemic rickets/osteomalacia. J Clin Endocrinol Metab 87:4957–4960

    Article  PubMed  CAS  Google Scholar 

  5. Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, Fujita T, Nakahara K, Fukumoto S, Yamashita T (2004) FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 19:429–435

    Article  PubMed  CAS  Google Scholar 

  6. Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, Goetz R, Kuro-o M, Mohammadi M, Sirkis R, Naveh-Many T, Silver J (2007) The parathyroid is a target organ for FGF23 in rats. J Clin Invest 117:4003–4008

    PubMed  CAS  Google Scholar 

  7. Imanishi Y, Inaba M, Kawata T, Nishizawa Y (2009) Animal models of hyperfunctioning parathyroid diseases for drug development. Expert Opin Drug Discov 4:727–740

    Article  CAS  Google Scholar 

  8. Shimada T, Mizutani S, Muto T, Yoneya T, Hino R, Takeda S, Takeuchi Y, Fujita T, Fukumoto S, Yamashita T (2001) Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci USA 98:6500–6505

    Article  PubMed  CAS  Google Scholar 

  9. De Beur SM, Finnegan RB, Vassiliadis J, Cook B, Barberio D, Estes S, Manavalan P, Petroziello J, Madden SL, Cho JY, Kumar R, Levine MA, Schiavi SC (2002) Tumors associated with oncogenic osteomalacia express genes important in bone and mineral metabolism. J Bone Miner Res 17:1102–1110

    Article  PubMed  Google Scholar 

  10. White KE, Larsson TE, Econs MJ (2006) The roles of specific genes implicated as circulating factors involved in normal and disordered phosphate homeostasis: frizzled related protein-4, matrix extracellular phosphoglycoprotein, and fibroblast growth factor 23. Endocr Rev 27:221–241

    Article  PubMed  CAS  Google Scholar 

  11. Berndt T, Craig TA, Bowe AE, Vassiliadis J, Reczek D, Finnegan R, Jan De Beur SM, Schiavi SC, Kumar R (2003) Secreted frizzled-related protein 4 is a potent tumor-derived phosphaturic agent. J Clin Invest 112:785–794

    PubMed  CAS  Google Scholar 

  12. Nakanishi R, Akiyama H, Kimura H, Otsuki B, Shimizu M, Tsuboyama T, Nakamura T (2008) Osteoblast-targeted expression of Sfrp4 in mice results in low bone mass. J Bone Miner Res 23:271–277

    Article  PubMed  CAS  Google Scholar 

  13. Habra MA, Jimenez C, Huang SC, Cote GJ, Murphy WA Jr, Gagel RF, Hoff AO (2008) Expression analysis of fibroblast growth factor-23, matrix extracellular phosphoglycoprotein, secreted frizzled-related protein-4, and fibroblast growth factor-7: identification of fibroblast growth factor-23 and matrix extracellular phosphoglycoprotein as major factors involved in tumor-induced osteomalacia. Endocr Pract 14:1108–1114

    PubMed  Google Scholar 

  14. Ishii A, Imanishi Y, Kobayashi K, Hashimoto J, Ueda T, Miyauchi A, Koyano HM, Kaji H, Saito T, Oba K, Komatsu Y, Kurajoh M, Nagata Y, Goto H, Wakasa K, Sugimoto T, Miki T, Inaba M, Nishizawa Y (2010) The levels of somatostatin receptors in causative tumors of oncogenic osteomalacia are insufficient for their agonist to normalize serum phosphate levels. Calcif Tissue Int 86:455–462

    Article  PubMed  CAS  Google Scholar 

  15. Park YK, Unni KK, Beabout JW, Hodgson SF (1994) Oncogenic osteomalacia: a clinicopathologic study of 17 bone lesions. J Korean Med Sci 9:289–298

    PubMed  CAS  Google Scholar 

  16. Kumar R (2000) Tumor-induced osteomalacia and the regulation of phosphate homeostasis. Bone 27:333–338

    Article  PubMed  CAS  Google Scholar 

  17. Kobayashi K, Imanishi Y, Koshiyama H, Miyauchi A, Wakasa K, Kawata T, Goto H, Ohashi H, Koyano HM, Mochizuki R, Miki T, Inaba M, Nishizawa Y (2006) Expression of FGF23 is correlated with serum phosphate level in isolated fibrous dysplasia. Life Sci 78:2295–2301

    Article  PubMed  CAS  Google Scholar 

  18. Nampei A, Hashimoto J, Hayashida K, Tsuboi H, Shi K, Tsuji I, Miyashita H, Yamada T, Matsukawa N, Matsumoto M, Morimoto S, Ogihara T, Ochi T, Yoshikawa H (2004) Matrix extracellular phosphoglycoprotein (MEPE) is highly expressed in osteocytes in human bone. J Bone Miner Metab 22:176–184

    Article  PubMed  CAS  Google Scholar 

  19. Imanishi Y, Inaba M, Nakatsuka K, Nagasue K, Okuno S, Yoshihara A, Miura M, Miyauchi A, Kobayashi K, Miki T, Shoji T, Ishimura E, Nishizawa Y (2004) FGF-23 in patients with end-stage renal disease on hemodialysis. Kidney Int 65:1943–1946

    Article  PubMed  CAS  Google Scholar 

  20. Rowe PS, de Zoysa PA, Dong R, Wang HR, White KE, Econs MJ, Oudet CL (2000) MEPE, a new gene expressed in bone marrow and tumors causing osteomalacia. Genomics 67:54–68

    Article  PubMed  CAS  Google Scholar 

  21. Argiro L, Desbarats M, Glorieux FH, Ecarot B (2001) Mepe, the gene encoding a tumor-secreted protein in oncogenic hypophosphatemic osteomalacia, is expressed in bone. Genomics 74:342–351

    Article  PubMed  CAS  Google Scholar 

  22. Boskey AL, Chiang P, Fermanis A, Brown J, Taleb H, David V, Rowe PS (2010) MEPE’s diverse effects on mineralization. Calcif Tissue Int 86:42–46

    Article  PubMed  CAS  Google Scholar 

  23. Addison WN, Nakano Y, Loisel T, Crine P, McKee MD (2008) MEPE-ASARM peptides control extracellular matrix mineralization by binding to hydroxyapatite: an inhibition regulated by PHEX cleavage of ASARM. J Bone Miner Res 23:1638–1649

    Article  PubMed  CAS  Google Scholar 

  24. Gowen LC, Petersen DN, Mansolf AL, Qi H, Stock JL, Tkalcevic GT, Simmons HA, Crawford DT, Chidsey-Frink KL, Ke HZ, McNeish JD, Brown TA (2003) Targeted disruption of the osteoblast/osteocyte factor 45 gene (OF45) results in increased bone formation and bone mass. J Biol Chem 278:1998–2007

    Article  PubMed  CAS  Google Scholar 

  25. David V, Martin A, Hedge AM, Rowe PS (2009) Matrix extracellular phosphoglycoprotein (MEPE) is a new bone renal hormone and vascularization modulator. Endocrinology 150:4012–4023

    Article  PubMed  CAS  Google Scholar 

  26. Bresler D, Bruder J, Mohnike K, Fraser WD, Rowe PS (2004) Serum MEPE-ASARM-peptides are elevated in X-linked rickets (HYP): implications for phosphaturia and rickets. J Endocrinol 183:R1–R9

    Article  PubMed  CAS  Google Scholar 

  27. Kawata T, Imanishi Y, Kobayashi K, Miki T, Arnold A, Inaba M, Nishizawa Y (2007) Parathyroid hormone regulates fibroblast growth factor-23 in a mouse model of primary hyperparathyroidism. J Am Soc Nephrol 18:2683–2688

    Article  PubMed  CAS  Google Scholar 

  28. Wang H, Yoshiko Y, Yamamoto R, Minamizaki T, Kozai K, Tanne K, Aubin JE, Maeda N (2008) Overexpression of fibroblast growth factor 23 suppresses osteoblast differentiation and matrix mineralization in vitro. J Bone Miner Res 23:939–948

    Article  PubMed  CAS  Google Scholar 

  29. Riminucci M, Collins MT, Fedarko NS, Cherman N, Corsi A, White KE, Waguespack S, Gupta A, Hannon T, Econs MJ, Bianco P, Gehron Robey P (2003) FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J Clin Invest 112:683–692

    PubMed  CAS  Google Scholar 

  30. Lu C, Huang S, Miclau T, Helms JA, Colnot C (2004) Mepe is expressed during skeletal development and regeneration. Histochem Cell Biol 121:493–499

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We greatly thank Dr. Jeffrey Lavigne (Immutopics, Inc.) for providing the goat anti-hFGF-23 antibody. This work was supported by two Grant-in-Aids for Scientific Research (C) (20591101 to Y.I. and 20590980 to M.I. and Y.I.), a grant from The Kidney Foundation, Japan (JKFB09-7 to Y.I.), and the JOS Distinguished Paper Award from the Japan Osteoporosis Society.

Conflict of interest

None to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuo Imanishi.

About this article

Cite this article

Imanishi, Y., Hashimoto, J., Ando, W. et al. Matrix extracellular phosphoglycoprotein is expressed in causative tumors of oncogenic osteomalacia. J Bone Miner Metab 30, 93–99 (2012). https://doi.org/10.1007/s00774-011-0290-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-011-0290-8

Keywords

Navigation