Skip to main content
Log in

Fat as a Friend or Foe of the Bone

  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The objective of this review is to summarize the literature on the prevalence and diagnosis of obesity and its metabolic profile, including bone metabolism, focusing on the main inflammatory and turnover bone mediators that better characterize metabolically healthy obesity phenotype, and to summarize the therapeutic interventions for obesity with their effects on bone health.

Recent Findings

Osteoporosis and fracture risk not only increase with age and menopause but also with metabolic diseases, such as diabetes mellitus. Thus, patients with high BMI may have a higher bone fragility and fracture risk. However, some obese individuals with healthy metabolic profiles seem to be less at risk of bone fracture.

Summary

Obesity has become an alarming disease with growing prevalence and multiple metabolic comorbidities, resulting in a significant burden on healthcare and increased mortality. The imbalance between increased food ingestion and decreased energy expenditure leads to pathological adipose tissue distribution and function, with increased secretion of proinflammatory markers and harmful consequences for body tissues, including bone tissue. However, some obese individuals seem to have a healthy metabolic profile and may not develop cardiometabolic disease during their lives. This healthy metabolic profile also benefits bone turnover and is associated with lower fracture risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Wang YC, et al. Health and economic burden of the projected obesity trends in the USA and the UK. Lancet. 2011;378(9793):815–25.

    Article  PubMed  Google Scholar 

  2. Okunogbe A, et al. Economic impacts of overweight and obesity: current and future estimates for eight countries. BMJ Glob Health. 2021;6(10):e006351.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Collaboration, N.C.D.R.F. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet. 2017;390(10113):2627–42.

    Article  Google Scholar 

  4. Collaboration, N.C.D.R.F. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 192 million participants. Lancet. 2016;387(10026):1377–96.

    Article  Google Scholar 

  5. • Bluher M. Obesity: Global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019;15(5):288–98. This paper summarizes evidence on the concept of metabolically healthy obesity.

    Article  PubMed  Google Scholar 

  6. Virani SS, et al. Heart disease and stroke statistics-2020 update: A report from the American Heart Association. Circulation. 2020;141(9):e139–596.

    Article  PubMed  Google Scholar 

  7. Blüher M. Metabolically healthy obesity. Endocr Rev. 2020;41(3):bnaa004.

  8. Ding C, Chan Z, Magkos F. Lean, but not healthy: the 'metabolically obese, normal-weight’ phenotype. Curr Opin Clin Nutr Metab Care. 2016;19(6):408–17.

    Article  CAS  PubMed  Google Scholar 

  9. • Wang B, et al. Prevalence of metabolically healthy obese and metabolically obese but normal weight in adults worldwide: A meta-analysis. Horm Metab Res. 2015;47(11):839–45. Summary of papers evaluating the specific characteristics of metabolically healthy obesity.

    Article  CAS  PubMed  Google Scholar 

  10. Loos RJF, Kilpelainen TO. Genes that make you fat, but keep you healthy. J Intern Med. 2018;284(5):450–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. World Health Organization. Assessment of osteoporosis at the primary health care level. Summary report of a WHO scientific group. WHO, Geneva. (2007). www.who.int/chp/topics/rheumatic/en/index.html

  12. Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006;17(12):1726–33.

    Article  CAS  PubMed  Google Scholar 

  13. Obesity and Overweight. World Health Organization. Available at: www.who.int/mediacentre/factsheets/fs311/en/. Accessed 19 March 2020, 2016.

  14. • Aung K, et al. Risk of developing diabetes and cardiovascular disease in metabolically unhealthy normal-weight and metabolically healthy obese individuals. J Clin Endocrinol Metab. 2014;99(2):462–8. Report on the association between metabolically healthy obese individuals and osteoporotic fractures.

    Article  CAS  PubMed  Google Scholar 

  15. Consultation WHOE. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004;363(9403):157–63.

    Article  Google Scholar 

  16. Pischon T, et al. General and abdominal adiposity and risk of death in Europe. N Engl J Med. 2008;359(20):2105–20.

    Article  CAS  PubMed  Google Scholar 

  17. American College of Cardiology/American Heart Association Task Force on Practice Guidelines, O.E.P. Executive summary: Guidelines (2013) for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Obesity Society published by the Obesity Society and American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Based on a systematic review from the The Obesity Expert Panel, 2013. Obesity (Silver Spring). 2014;22 Suppl 2:S5–39.

    Google Scholar 

  18. Britton KA, et al. Body fat distribution, incident cardiovascular disease, cancer, and all-cause mortality. J Am Coll Cardiol. 2013;62(10):921–5.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yamaji T, et al. Visceral fat volume and the prevalence of colorectal adenoma. Am J Epidemiol. 2009;170(12):1502–11.

    Article  PubMed  Google Scholar 

  20. Shen W, Chen J. Application of imaging and other noninvasive techniques in determining adipose tissue mass. Methods Mol Biol. 2008;456:39–54.

  21. Cheung AS, et al. Correlation of visceral adipose tissue measured by Lunar Prodigy dual X-ray absorptiometry with MRI and CT in older men. Int J Obes (Lond). 2016;40(8):1325–8.

    Article  CAS  PubMed  Google Scholar 

  22. • Vecchie A, et al. Obesity phenotypes and their paradoxical association with cardiovascular diseases. Eur J Intern Med. 2018;48:6–17. This paper describes how two types of obesity have different manifestations in the cardiovascular system.

    Article  PubMed  Google Scholar 

  23. Lee JH, et al. The role of adipose tissue mitochondria: Regulation of mitochondrial function for the treatment of metabolic diseases. Int J Mol Sci. 2019;20(19):4924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mittal B. Subcutaneous adipose tissue & visceral adipose tissue. Indian J Med Res. 2019;149(5):571–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Despres JP. Body fat distribution and risk of cardiovascular disease: an update. Circulation. 2012;126(10):1301–13.

    Article  PubMed  Google Scholar 

  26. Tchernof A, Despres JP. Pathophysiology of human visceral obesity: an update. Physiol Rev. 2013;93(1):359–404.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang H, et al. Hepatic fat content is a determinant of metabolic phenotypes and increased carotid intima-media thickness in obese adults. Sci Rep. 2016;6:21894.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. McMorrow AM, et al. Adipose tissue dysregulation and metabolic consequences in childhood and adolescent obesity: potential impact of dietary fat quality. Proc Nutr Soc. 2015;74(1):67–82.

    Article  CAS  PubMed  Google Scholar 

  29. Wildman RP, et al. The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: Prevalence and correlates of 2 phenotypes among the US population (NHANES 1999–2004). Arch Intern Med. 2008;168(15):1617–24.

    Article  PubMed  Google Scholar 

  30. van Vliet-Ostaptchouk JV, et al. The prevalence of metabolic syndrome and metabolically healthy obesity in Europe: A collaborative analysis of ten large cohort studies. BMC Endocr Disord. 2014;14:9.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Karelis AD, Brochu M, Rabasa-Lhoret R. Can we identify metabolically healthy but obese individuals (MHO)? Diabetes Metab. 2004;30(6):569–72.

    Article  CAS  PubMed  Google Scholar 

  32. Tsatsoulis A, Paschou SA. Metabolically healthy obesity: Criteria, epidemiology, controversies, and consequences. Curr Obes Rep. 2020;9(2):109–20.

    Article  PubMed  Google Scholar 

  33. Karelis AD, Rabasa-Lhoret R. Inclusion of C-reactive protein in the identification of metabolically healthy but obese (MHO) individuals. Diabetes Metab. 2008;34(2):183–4.

    Article  CAS  PubMed  Google Scholar 

  34. Li L, et al. Identification of genetic and environmental factors predicting metabolically healthy obesity in children: Data from the BCAMS study. J Clin Endocrinol Metab. 2016;101(4):1816–25.

    Article  ADS  CAS  PubMed  Google Scholar 

  35. •• Rask-Andersen M, Johansson A. Illuminating the “healthy obese” phenotype. Nat Metab. 2023;5(2):193–4. Presents evidence for the concept of "healthy obesity".

    Article  PubMed  Google Scholar 

  36. Phillips CM. Metabolically healthy obesity: Definitions, determinants and clinical implications. Rev Endocr Metab Disord. 2013;14(3):219–27.

    Article  CAS  PubMed  Google Scholar 

  37. Wentworth JM, et al. Pro-inflammatory CD11c+CD206+ adipose tissue macrophages are associated with insulin resistance in human obesity. Diabetes. 2010;59(7):1648–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fabbrini E, et al. Association between specific adipose tissue CD4+ T-cell populations and insulin resistance in obese individuals. Gastroenterology. 2013;145(2):366-74 e1-3.

    Article  CAS  PubMed  Google Scholar 

  39. Phillips CM, Perry IJ. Does inflammation determine metabolic health status in obese and nonobese adults? J Clin Endocrinol Metab. 2013;98(10):E1610–9.

    Article  CAS  PubMed  Google Scholar 

  40. Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucose homeostasis. Nature. 2006;444(7121):847–53.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rondinone CM. Adipocyte-derived hormones, cytokines, and mediators. Endocrine. 2006;29(1):81–90.

    Article  CAS  PubMed  Google Scholar 

  42. Smekal A, Vaclavik J. Adipokines and cardiovascular disease: A comprehensive review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2017;161(1):31–40.

    Article  PubMed  Google Scholar 

  43. Aguilar-Salinas CA, et al. High adiponectin concentrations are associated with the metabolically healthy obese phenotype. J Clin Endocrinol Metab. 2008;93(10):4075–9.

    Article  CAS  PubMed  Google Scholar 

  44. Christou KA, et al. The regulation of serum resistin levels in metabolically healthy and unhealthy obese individuals. Hormones (Athens). 2020;19(4):523–9.

    Article  PubMed  Google Scholar 

  45. Obradovic M, et al. Leptin and obesity: Role and clinical implication. Front Endocrinol (Lausanne). 2021;12: 585887.

    Article  PubMed  Google Scholar 

  46. Ghantous CM, et al. Differential role of leptin and adiponectin in cardiovascular system. Int J Endocrinol. 2015;2015: 534320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Labruna G, et al. High leptin/adiponectin ratio and serum triglycerides are associated with an “at-risk” phenotype in young severely obese patients. Obesity (Silver Spring). 2011;19(7):1492–6.

    Article  CAS  PubMed  Google Scholar 

  48. Gomez-Ambrosi J, et al. Increased cardiometabolic risk factors and inflammation in adipose tissue in obese subjects classified as metabolically healthy. Diabetes Care. 2014;37(10):2813–21.

    Article  CAS  PubMed  Google Scholar 

  49. Jamar G, et al. Leptin as a cardiovascular risk marker in metabolically healthy obese: Hyperleptinemia in metabolically healthy obese. Appetite. 2017;108:477–82.

    Article  PubMed  Google Scholar 

  50. Kanis JA, et al. The diagnosis of osteoporosis. J Bone Miner Res. 1994;9(8):1137–41.

    Article  CAS  PubMed  Google Scholar 

  51. Scott D, Duque G, Ebeling PR. Does obesity reduce risk for osteoporosis and fractures in older adults? Intern Med J. 2018;48(1):104–5. https://doi.org/10.1111/imj.13655.

    Article  PubMed  Google Scholar 

  52. Cui LH, et al. Relative contribution of body composition to bone mineral density at different sites in men and women of South Korea. J Bone Miner Metab. 2007;25(3):165–71.

    Article  PubMed  Google Scholar 

  53. Lekamwasam S, et al. Association between bone mineral density, lean mass, and fat mass among healthy middle-aged premenopausal women: a cross-sectional study in southern Sri Lanka. J Bone Miner Metab. 2009;27(1):83–8.

    Article  PubMed  Google Scholar 

  54. Salamat MR, et al. Relationship between weight, body mass index, and bone mineral density in men referred for dual-energy X-ray absorptiometry scan in Isfahan. Iran J Osteoporos. 2013;2013: 205963.

    PubMed  Google Scholar 

  55. De Laet C, et al. Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int. 2005;16(11):1330–8.

    Article  PubMed  Google Scholar 

  56. • Compston J. Obesity and fractures in postmenopausal women. Curr Opin Rheumatol. 2015;27(4):414–9. Overview of the association between obesity and fractures.

    Article  PubMed  Google Scholar 

  57. Felson DT, et al. Effects of weight and body mass index on bone mineral density in men and women: The Framingham study. J Bone Miner Res. 1993;8(5):567–73.

    Article  CAS  PubMed  Google Scholar 

  58. Berg RM, et al. Positive Association Between Adipose Tissue and Bone Stiffness. Calcif Tissue Int. 2015;97(1):40–9.

    Article  CAS  PubMed  Google Scholar 

  59. Compston JE, et al. Relationship of weight, height, and body mass index with fracture risk at different sites in postmenopausal women: the Global Longitudinal study of Osteoporosis in Women (GLOW). J Bone Miner Res. 2014;29(2):487–93.

    Article  PubMed  Google Scholar 

  60. Pirro M, et al. High weight or body mass index increase the risk of vertebral fractures in postmenopausal osteoporotic women. J Bone Miner Metab. 2010;28(1):88–93.

    Article  PubMed  Google Scholar 

  61. Russell M, et al. Visceral fat is a negative predictor of bone density measures in obese adolescent girls. J Clin Endocrinol Metab. 2010;95(3):1247–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bredella MA, et al. Determinants of bone mineral density in obese premenopausal women. Bone. 2011;48(4):748–54.

    Article  PubMed  Google Scholar 

  63. Brumbaugh DE, et al. Intramyocellular lipid is associated with visceral adiposity, markers of insulin resistance, and cardiovascular risk in prepubertal children: The EPOCH study. J Clin Endocrinol Metab. 2012;97(7):E1099–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ryan AS, et al. Atrophy and intramuscular fat in specific muscles of the thigh: associated weakness and hyperinsulinemia in stroke survivors. Neurorehabil Neural Repair. 2011;25(9):865–72.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bredella MA, et al. Young women with cold-activated brown adipose tissue have higher bone mineral density and lower Pref-1 than women without brown adipose tissue: a study in women with anorexia nervosa, women recovered from anorexia nervosa, and normal-weight women. J Clin Endocrinol Metab. 2012;97(4):E584–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Leeners B, et al. Ovarian hormones and obesity. Hum Reprod Update. 2017;23(3):300–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Khosla S. Minireview: The OPG/RANKL/RANK system. Endocrinology. 2001;142(12):5050–5.

    Article  CAS  PubMed  Google Scholar 

  68. Campos RM, et al. The role of pro/anti-inflammatory adipokines on bone metabolism in NAFLD obese adolescents: Effects of long-term interdisciplinary therapy. Endocrine. 2012;42(1):146–56.

    Article  CAS  PubMed  Google Scholar 

  69. Gkastaris K, et al. Obesity, osteoporosis and bone metabolism. J Musculoskelet Neuronal Interact. 2020;20(3):372–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. de Paula FJ, Rosen CJ. Bone remodeling and energy metabolism: new perspectives. Bone Res. 2013;1(1):72–84.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Krings A, et al. Bone marrow fat has brown adipose tissue characteristics, which are attenuated with aging and diabetes. Bone. 2012;50(2):546–52.

    Article  CAS  PubMed  Google Scholar 

  72. Bredella MA, et al. Increased bone marrow fat in anorexia nervosa. J Clin Endocrinol Metab. 2009;94(6):2129–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yeung DK, et al. Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation: a proton MR spectroscopy study. J Magn Reson Imaging. 2005;22(2):279–85.

    Article  PubMed  Google Scholar 

  74. •• Rosen CJ, Bouxsein ML. Mechanisms of disease: Is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol. 2006;2(1):35–43. Presents current evidence on the role of marrow fat in osteoporosis.

    Article  CAS  PubMed  Google Scholar 

  75. Ko DS, et al. Altered physiology of mesenchymal stem cells in the pathogenesis of adolescent idiopathic scoliosis. World J Clin Cases. 2020;8(11):2102–10.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Moorthi RN, et al. Bone marrow fat is increased in chronic kidney disease by magnetic resonance spectroscopy. Osteoporos Int. 2015;26(6):1801–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Halade GV, et al. High fat diet-induced animal model of age-associated obesity and osteoporosis. J Nutr Biochem. 2010;21(12):1162–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shu L, et al. High-fat diet causes bone loss in young mice by promoting osteoclastogenesis through alteration of the bone marrow environment. Calcif Tissue Int. 2015;96(4):313–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mutt SJ, et al. Vitamin D and adipose tissue-more than storage. Front Physiol. 2014;5:228.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Zhou S, LeBoff MS, Glowacki J. Vitamin D metabolism and action in human bone marrow stromal cells. Endocrinology. 2010;151(1):14–22.

    Article  CAS  PubMed  Google Scholar 

  81. Duque G, Macoritto M, Kremer R. 1,25(OH)2D3 inhibits bone marrow adipogenesis in senescence accelerated mice (SAM-P/6) by decreasing the expression of peroxisome proliferator-activated receptor gamma 2 (PPARgamma2). Exp Gerontol. 2004;39(3):333–8.

    Article  CAS  PubMed  Google Scholar 

  82. Duque G, et al. 1,25(OH)2D3 acts as a bone-forming agent in the hormone-independent senescence-accelerated mouse (SAM-P/6). Am J Physiol Endocrinol Metab. 2005;288(4):E723–30.

    Article  CAS  PubMed  Google Scholar 

  83. Shockley KR, et al. PPARgamma2 nuclear receptor controls multiple regulatory pathways of osteoblast differentiation from marrow mesenchymal stem cells. J Cell Biochem. 2009;106(2):232–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ichida F, et al. Reciprocal roles of MSX2 in regulation of osteoblast and adipocyte differentiation. J Biol Chem. 2004;279(32):34015–22.

    Article  CAS  PubMed  Google Scholar 

  85. Ilich JZ, et al. Interrelationship among muscle, fat, and bone: Connecting the dots on cellular, hormonal, and whole body levels. Ageing Res Rev. 2014;15:51–60.

    Article  CAS  PubMed  Google Scholar 

  86. Kang S, et al. Wnt signaling stimulates osteoblastogenesis of mesenchymal precursors by suppressing CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma. J Biol Chem. 2007;282(19):14515–24.

    Article  CAS  PubMed  Google Scholar 

  87. Horowitz MC, et al. Bone marrow adipocytes. Adipocyte. 2017;6(3):193–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Singh L, et al. Good, bad, or ugly: the biological roles of bone marrow fat. Curr Osteoporos Rep. 2018;16(2):130–7.

    Article  PubMed  Google Scholar 

  89. Cadenas-Sanchez C, et al. Differences in specific abdominal fat depots between metabolically healthy and unhealthy children with overweight/obesity: the role of cardiorespiratory fitness. Scand J Med Sci Sports. 2023;33(8):1462–72.

    Article  PubMed  Google Scholar 

  90. Bredella MA, et al. Vertebral bone marrow fat is positively associated with visceral fat and inversely associated with IGF-1 in obese women. Obesity (Silver Spring). 2011;19(1):49–53.

    Article  CAS  PubMed  Google Scholar 

  91. Shen W, et al. MRI-measured bone marrow adipose tissue is inversely related to DXA-measured bone mineral in Caucasian women. Osteoporos Int. 2007;18(5):641–7.

    Article  CAS  PubMed  Google Scholar 

  92. Bredella MA, et al. Determinants of bone microarchitecture and mechanical properties in obese men. J Clin Endocrinol Metab. 2012;97(11):4115–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Fischer V, et al. Calcium and vitamin-D deficiency marginally impairs fracture healing but aggravates posttraumatic bone loss in osteoporotic mice. Sci Rep. 2017;7(1):7223.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  94. •• Reid IR, Baldock PA, Cornish J. Effects of leptin on the skeleton. Endocr Rev. 2018;39(6):938–59. Presents mechanistic evidence for the impact of leptin on bone.

    Article  PubMed  Google Scholar 

  95. Cornish J, et al. Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J Endocrinol. 2002;175(2):405–15.

    Article  CAS  PubMed  Google Scholar 

  96. Thomas T, et al. Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology. 1999;140(4):1630–8.

    Article  CAS  PubMed  Google Scholar 

  97. Bjornholm M, et al. Mice lacking inhibitory leptin receptor signals are lean with normal endocrine function. J Clin Invest. 2007;117(5):1354–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Shi Y, et al. Dissociation of the neuronal regulation of bone mass and energy metabolism by leptin in vivo. Proc Natl Acad Sci U S A. 2008;105(51):20529–33.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ducy P, et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell. 2000;100(2):197–207.

    Article  CAS  PubMed  Google Scholar 

  100. Pasco JA, et al. Serum leptin levels are associated with bone mass in nonobese women. J Clin Endocrinol Metab. 2001;86(5):1884–7.

    CAS  PubMed  Google Scholar 

  101. Yamauchi M, et al. Plasma leptin concentrations are associated with bone mineral density and the presence of vertebral fractures in postmenopausal women. Clin Endocrinol (Oxf). 2001;55(3):341–7.

    Article  CAS  PubMed  Google Scholar 

  102. Ruhl CE, Everhart JE. Relationship of serum leptin concentration with bone mineral density in the United States population. J Bone Miner Res. 2002;17(10):1896–903.

    Article  CAS  PubMed  Google Scholar 

  103. Odabasi E, et al. Plasma leptin concentrations in postmenopausal women with osteoporosis. Eur J Endocrinol. 2000;142(2):170–3.

    Article  CAS  PubMed  Google Scholar 

  104. Jurimae J, Jurimae T. Adiponectin is a predictor of bone mineral density in middle-aged premenopausal women. Osteoporos Int. 2007;18(9):1253–9.

    Article  CAS  PubMed  Google Scholar 

  105. Jurimae J, et al. The influence of ghrelin, adiponectin, and leptin on bone mineral density in healthy postmenopausal women. J Bone Miner Metab. 2008;26(6):618–23.

    Article  PubMed  Google Scholar 

  106. Zoico E, et al. Relation between adiponectin and bone mineral density in elderly post-menopausal women: role of body composition, leptin, insulin resistance, and dehydroepiandrosterone sulfate. J Endocrinol Invest. 2008;31(4):297–302.

    Article  CAS  PubMed  Google Scholar 

  107. Basurto L, et al. Adiponectin is associated with low bone mineral density in elderly men. Eur J Endocrinol. 2009;160(2):289–93.

    Article  CAS  PubMed  Google Scholar 

  108. Kontogianni MD, et al. Blood leptin and adiponectin as possible mediators of the relation between fat mass and BMD in perimenopausal women. J Bone Miner Res. 2004;19(4):546–51.

    Article  CAS  PubMed  Google Scholar 

  109. Fasshauer M, et al. Hormonal regulation of adiponectin gene expression in 3T3-L1 adipocytes. Biochem Biophys Res Commun. 2002;290(3):1084–9.

    Article  CAS  PubMed  Google Scholar 

  110. Lee S, et al. Effect of adipokine and ghrelin levels on BMD and fracture risk: an updated systematic review and meta-analysis. Front Endocrinol (Lausanne). 2023;14:1044039.

    Article  PubMed  Google Scholar 

  111. Carr MC. The emergence of the metabolic syndrome with menopause. J Clin Endocrinol Metab. 2003;88(6):2404–11.

    Article  CAS  PubMed  Google Scholar 

  112. Bailey CJ, Ahmed-Sorour H. Role of ovarian hormones in the long-term control of glucose homeostasis. Effects of insulin secretion Diabetologia. 1980;19(5):475–81.

    CAS  PubMed  Google Scholar 

  113. Suchacki KJ, Thomas BJ, Ikushima YM, Chen KC, Fyfe C, Tavares AAS, Sulston RJ, Lovdel A, Woodward HJ, Han X, Mattiucci D, Brain EJ, Alcaide-Corral CJ, Kobayashi H, Gray GA, Whitfield PD, Stimson RH, Morton NM, Johnstone AM, Cawthorn WP. The effects of caloric restriction on adipose tissue and metabolic health are sex- and age-dependent. Elife. 2023;12:e88080.

  114. Miller KK, et al. Truncal adiposity, relative growth hormone deficiency, and cardiovascular risk. J Clin Endocrinol Metab. 2005;90(2):768–74.

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  115. Yakar S, et al. Circulating levels of IGF-1 directly regulate bone growth and density. J Clin Invest. 2002;110(6):771–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266–81.

    Article  CAS  PubMed  Google Scholar 

  117. Kremer R, et al. Vitamin D status and its relationship to body fat, final height, and peak bone mass in young women. J Clin Endocrinol Metab. 2009;94(1):67–73.

    Article  CAS  PubMed  Google Scholar 

  118. Arunabh S, et al. Body fat content and 25-hydroxyvitamin D levels in healthy women. J Clin Endocrinol Metab. 2003;88(1):157–61.

    Article  CAS  PubMed  Google Scholar 

  119. Parikh SJ, et al. The relationship between obesity and serum 1,25-dihydroxy vitamin D concentrations in healthy adults. J Clin Endocrinol Metab. 2004;89(3):1196–9.

    Article  CAS  PubMed  Google Scholar 

  120. Karampela I, et al. Vitamin D and obesity: current evidence and controversies. Curr Obes Rep. 2021;10(2):162–80.

    Article  PubMed  Google Scholar 

  121. Manson JE, et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. N Engl J Med. 2019;380(1):33–44.

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  122. Ortega RM, et al. Preliminary data about the influence of vitamin D status on the loss of body fat in young overweight/obese women following two types of hypocaloric diet. Br J Nutr. 2008;100(2):269–72.

    Article  CAS  PubMed  Google Scholar 

  123. Salehpour A, et al. A 12-week double-blind randomized clinical trial of vitamin D(3) supplementation on body fat mass in healthy overweight and obese women. Nutr J. 2012;11:78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wamberg L, et al. Effects of vitamin D supplementation on body fat accumulation, inflammation, and metabolic risk factors in obese adults with low vitamin D levels - results from a randomized trial. Eur J Intern Med. 2013;24(7):644–9.

    Article  CAS  PubMed  Google Scholar 

  125. Zhou J, et al. The effect of calcium and vitamin D supplementation on obesity in postmenopausal women: secondary analysis for a large-scale, placebo controlled, double-blind, 4-year longitudinal clinical trial. Nutr Metab (Lond). 2010;7:62.

    Article  PubMed  Google Scholar 

  126. Bolland MJ, et al. Testosterone levels following decreases in serum osteocalcin. Calcif Tissue Int. 2013;93(2):133–6.

    Article  CAS  PubMed  Google Scholar 

  127. Sukumar D, Shapses SA, Schneider SH. Vitamin D supplementation during short-term caloric restriction in healthy overweight/obese older women: effect on glycemic indices and serum osteocalcin levels. Mol Cell Endocrinol. 2015;410:73–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Gilsanz V, et al. Vitamin D status and its relation to muscle mass and muscle fat in young women. J Clin Endocrinol Metab. 2010;95(4):1595–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Li J, et al. Vitamin D prevents lipid accumulation in murine muscle through regulation of PPARgamma and perilipin-2 expression. J Steroid Biochem Mol Biol. 2018;177:116–24.

    Article  ADS  CAS  PubMed  Google Scholar 

  130. Shimizu Y, et al. Serum 25-hydroxyvitamin D level and risk of falls in Japanese community-dwelling elderly women: a 1-year follow-up study. Osteoporos Int. 2015;26(8):2185–92.

    Article  CAS  PubMed  Google Scholar 

  131. Aung K. Review: in postmenopausal women and older men, vitamin D plus calcium reduces some fractures. Ann Intern Med. 2014;161(6):JC5.

    Article  PubMed  Google Scholar 

  132. Marques Loureiro L, et al. Does the metabolically healthy obese phenotype protect adults with class III obesity from biochemical alterations related to bone metabolism? Nutrients. 2019;11(9):2125.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Wortsman J, et al. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000;72(3):690–3.

    Article  CAS  PubMed  Google Scholar 

  134. Sukumar D, et al. Can bone-regulating hormones and nutrients help characterize the metabolically healthy obese phenotype. Nutr Health. 2018;24(3):153–62.

    Article  CAS  PubMed  Google Scholar 

  135. Wung CH, et al. Associations between metabolic syndrome and obesity-related indices and bone mineral density T-score in hemodialysis patients. J Pers Med. 2021;11(8):775.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Starup-Linde J, et al. Bone density and structure in overweight men with and without diabetes. Front Endocrinol (Lausanne). 2022;13: 837084.

    Article  PubMed  Google Scholar 

  137. Nobrega da Silva V, et al. Impact of metabolic syndrome and its components on bone remodeling in adolescents. PLoS One. 2021;16(7):e0253892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Yamaguchi T, et al. Associations between components of the metabolic syndrome versus bone mineral density and vertebral fractures in patients with type 2 diabetes. Bone. 2009;45(2):174–9.

    Article  CAS  PubMed  Google Scholar 

  139. Gilsanz V, et al. Reciprocal relations of subcutaneous and visceral fat to bone structure and strength. J Clin Endocrinol Metab. 2009;94(9):3387–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Janicka A, et al. Fat mass is not beneficial to bone in adolescents and young adults. J Clin Endocrinol Metab. 2007;92(1):143–7.

    Article  CAS  PubMed  Google Scholar 

  141. Choi HS, et al. Relationship between visceral adiposity and bone mineral density in Korean adults. Calcif Tissue Int. 2010;87(3):218–25.

    Article  CAS  PubMed  Google Scholar 

  142. Pollock NK, et al. Lower bone mass in prepubertal overweight children with prediabetes. J Bone Miner Res. 2010;25(12):2760–9.

    Article  PubMed  PubMed Central  Google Scholar 

  143. •• Mirzababaei A, et al. Metabolically healthy/unhealthy components may modify bone mineral density in obese people. Arch Osteoporos. 2017;12(1):95. Presents the main components linking healthy and unhealthy obesity with bone.

    Article  PubMed  Google Scholar 

  144. Wang Y, et al. Association between forearm bone mineral density and metabolic obesity in a northern Chinese population. Metab Syndr Relat Disord. 2020;18(5):251–9.

    Article  CAS  PubMed  Google Scholar 

  145. Ubago-Guisado E, et al. Differences in areal bone mineral density between metabolically healthy and unhealthy overweight/obese children: the role of physical activity and cardiorespiratory fitness. Pediatr Res. 2020;87(7):1219–25.

    Article  CAS  PubMed  Google Scholar 

  146. Li X, Gong X, Jiang W. Abdominal obesity and risk of hip fracture: A meta-analysis of prospective studies. Osteoporos Int. 2017;28(10):2747–57.

    Article  CAS  PubMed  Google Scholar 

  147. Nguyen ND, et al. Abdominal fat and hip fracture risk in the elderly: The Dubbo Osteoporosis Epidemiology Study. BMC Musculoskelet Disord. 2005;6:11.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Bachmann KN, et al. Vertebral strength and estimated fracture risk across the BMI spectrum in women. J Bone Miner Res. 2016;31(2):281–8.

    Article  PubMed  Google Scholar 

  149. Ghezelbash F, et al. Obesity and obesity shape markedly influence spine biomechanics: a subject-specific risk assessment model. Ann Biomed Eng. 2017;45(10):2373–82.

    Article  PubMed  Google Scholar 

  150. Gandham A, et al. Incidence and predictors of fractures in older adults with and without obesity defined by body mass index versus body fat percentage. Bone. 2020;140: 115546.

    Article  PubMed  Google Scholar 

  151. Walsh JS, Vilaca T. Obesity, type 2 diabetes and bone in adults. Calcif Tissue Int. 2017;100(5):528–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Hamer M, et al. Stability of metabolically healthy obesity over 8 years: The English Longitudinal Study of Ageing. Eur J Endocrinol. 2015;173(5):703–8.

    Article  CAS  PubMed  Google Scholar 

  153. Schroder H, et al. Determinants of the transition from a cardiometabolic normal to abnormal overweight/obese phenotype in a Spanish population. Eur J Nutr. 2014;53(6):1345–53.

    Article  PubMed  Google Scholar 

  154. Langlois JA, et al. Weight loss from maximum body weight among middle-aged and older white women and the risk of hip fracture: The NHANES I epidemiologic follow-up study. Osteoporos Int. 2001;12(9):763–8.

    Article  CAS  PubMed  Google Scholar 

  155. Ensrud KE, et al. Voluntary weight reduction in older men increases hip bone loss: the osteoporotic fractures in men study. J Clin Endocrinol Metab. 2005;90(4):1998–2004.

    Article  CAS  PubMed  Google Scholar 

  156. Bleicher K, et al. The role of fat and lean mass in bone loss in older men: findings from the CHAMP study. Bone. 2011;49(6):1299–305.

    Article  PubMed  Google Scholar 

  157. Pop LC, et al. Moderate weight loss in obese and overweight men preserves bone quality. Am J Clin Nutr. 2015;101(3):659–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Seimon RV, et al. Effect of weight loss via severe vs moderate energy restriction on lean mass and body composition among postmenopausal women with obesity: the TEMPO Diet randomized clinical trial. JAMA Netw Open. 2019;2(10): e1913733.

    Article  PubMed  PubMed Central  Google Scholar 

  159. •• Tencerova M, Duque G, Beekman KM, Corsi A, Geurts J, Bisschop PH, Paccou J. The impact of interventional weight loss on bone marrow adipose tissue in people living with obesity and its connection to bone metabolism. Nutrients. 2023;15(21):4601. Comprehensive review on the impact of weight loss on marrow fat.

  160. Nolan CJ, Prentki M. Insulin resistance and insulin hypersecretion in the metabolic syndrome and type 2 diabetes: Time for a conceptual framework shift. Diab Vasc Dis Res. 2019;16(2):118–27.

    Article  CAS  PubMed  Google Scholar 

  161. Velho S, et al. Metabolically healthy obesity: Different prevalences using different criteria. Eur J Clin Nutr. 2010;64(10):1043–51.

    Article  CAS  PubMed  Google Scholar 

  162. Shah K, et al. Exercise training in obese older adults prevents increase in bone turnover and attenuates decrease in hip bone mineral density induced by weight loss despite decline in bone-active hormones. J Bone Miner Res. 2011;26(12):2851–9.

    Article  CAS  PubMed  Google Scholar 

  163. Emerenziani GP, et al. Effects of body weight loss program on parameters of muscle performance in female obese adults. J Sports Med Phys Fitness. 2019;59(4):624–31.

    Article  PubMed  Google Scholar 

  164. Xie B, et al. The impact of glucagon-like peptide 1 receptor agonists on bone metabolism and its possible mechanisms in osteoporosis treatment. Front Pharmacol. 2021;12: 697442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Cai TT, et al. Effects of GLP-1 receptor agonists on bone mineral density in patients with type 2 diabetes mellitus: a 52-week clinical study. Biomed Res Int. 2021;2021:3361309.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Kong QX, et al. Evaluation of the risk of fracture in type 2 diabetes mellitus patients with incretins: an updated meta-analysis. Endokrynol Pol. 2021;72(4):319–28.

    Article  CAS  PubMed  Google Scholar 

  167. Hartman ML, et al. Effects of novel dual gip and GLP-1 receptor agonist tirzepatide on biomarkers of nonalcoholic steatohepatitis in patients with type 2 diabetes. Diabetes Care. 2020;43(6):1352–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ding KH, et al. Impact of glucose-dependent insulinotropic peptide on age-induced bone loss. J Bone Miner Res. 2008;23(4):536–43.

    Article  CAS  PubMed  Google Scholar 

  169. Felipe LA, et al. Effects of Roux-en-Y gastric bypass on the metabolic profile and systemic inflammatory status of women with metabolic syndrome: randomized controlled clinical trial. Diabetol Metab Syndr. 2023;15(1):19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Yu EW, et al. Two-year changes in bone density after Roux-en-Y gastric bypass surgery. J Clin Endocrinol Metab. 2015;100(4):1452–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Mele C, et al. Bone response to weight loss following bariatric surgery. Front Endocrinol (Lausanne). 2022;13: 921353.

    Article  PubMed  Google Scholar 

  172. Rousseau C, et al. Change in fracture risk and fracture pattern after bariatric surgery: nested case-control study. BMJ. 2016;354: i3794.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Yu EW, et al. Fracture risk after bariatric surgery: Roux-en-Y gastric bypass versus adjustable gastric banding. J Bone Miner Res. 2017;32(6):1229–36.

    Article  PubMed  Google Scholar 

  174. Murai IH, et al. Exercise mitigates bone loss in women with severe obesity after Roux-en-Y gastric bypass: a randomized controlled trial. J Clin Endocrinol Metab. 2019;104(10):4639–50.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

E.G., R.K., and G.D. wrote the main manuscript text and E.G. and G.D. prepared figure 1. All authors reviewed the manuscript.

Corresponding author

Correspondence to Gustavo Duque.

Ethics declarations

Conflict of Interest

EG, RK, and GD have no conflicts of interest to declare.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Ethical Approval

This review article does not present any previously unpublished original research, and ethical approval is therefore not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gruneisen, E., Kremer, R. & Duque, G. Fat as a Friend or Foe of the Bone. Curr Osteoporos Rep (2024). https://doi.org/10.1007/s11914-024-00864-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11914-024-00864-4

Keywords

Navigation