Skip to main content
Log in

Bone marrow fat is increased in chronic kidney disease by magnetic resonance spectroscopy

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

In aging, the bone marrow fills with fat and this may lead to higher fracture risk. We show that a bone marrow fat measurement by magnetic resonance spectroscopy (MRS), a newer technique not previously studied in chronic kidney disease (CKD), is useful and reproducible. CKD patients have significantly higher bone marrow fat than healthy adults.

Introduction

Renal osteodystrophy leads to increased morbidity and mortality in patients with CKD. Traditional bone biopsy histomorphometry is used to study abnormalities in CKD, but the bone marrow, the source of osteoblasts, has not been well characterized in patients with CKD.

Methods

To determine the repeatability of bone marrow fat fraction assessment by MRS and water-fat imaging (WFI) at four sites in patients with CKD, testing was performed to determine the coefficients of reproducibility and intraclass coefficients (ICCs). We further determined if this noninvasive technique could be used to determine if there are differences in the percent bone marrow fat in patients with CKD compared to matched controls using paired t tests.

Results

The mean age of subjects with CKD was 59.8 ± 7.2 years, and the mean eGFR was 24 ± 8 ml/min. MRS showed good reproducibility at all sites in subjects with CKD and controls, with a coefficient of reproducibilities ranging from 2.4 to 13 %. MRS and WFI assessment of bone marrow fat showed moderate to strong agreement (ICC 0.6–0.7) at the lumbar spine, with poorer agreement at the iliac crest and no agreement at the tibia. The mean percent bone marrow fat at L2–L4 was 13.8 % (95 % CI 8.3–19.7) higher in CKD versus controls (p < 0.05).

Conclusions

MRS is a useful and reproducible technique to study bone marrow fat in CKD. Patients with CKD have significantly higher bone marrow fat than healthy adults; the relationship with bone changes requires further analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ensrud KE, Lui LY, Taylor BC, Ishani A, Shlipak MG, Stone KL, Cauley JA, Jamal SA, Antoniucci DM, Cummings SR (2007) Renal function and risk of hip and vertebral fractures in older women. Arch Intern Med 167(2):133–139. doi:10.1001/archinte.167.2.133

    Article  PubMed  Google Scholar 

  2. Alem AM, Sherrard DJ, Gillen DL, Weiss NS, Beresford SA, Heckbert SR, Wong C, Stehman-Breen C (2000) Increased risk of hip fracture among patients with end-stage renal disease. Kidney Int 58(1):396–399. doi:10.1046/j.1523-1755.2000.00178.x

    Article  CAS  PubMed  Google Scholar 

  3. Moe S, Drueke T, Cunningham J, Goodman W, Martin K, Olgaard K, Ott S, Sprague S, Lameire N, Eknoyan G, Kidney Disease: Improving Global O (2006) Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 69(11):1945–1953. doi:10.1038/sj.ki.5000414

    Article  CAS  PubMed  Google Scholar 

  4. Piraino B, Chen T, Cooperstein L, Segre G, Puschett J (1988) Fractures and vertebral bone mineral density in patients with renal osteodystrophy. Clin Nephrol 30(2):57–62

    CAS  PubMed  Google Scholar 

  5. Gerakis A, Hadjidakis D, Kokkinakis E, Apostolou T, Raptis S, Billis A (2000) Correlation of bone mineral density with the histological findings of renal osteodystrophy in patients on hemodialysis. J Nephrol 13(6):437–443

    CAS  PubMed  Google Scholar 

  6. London GM, Marchais SJ, Guerin AP, Boutouyrie P, Metivier F, de Vernejoul MC (2008) Association of bone activity, calcium load, aortic stiffness, and calcifications in ESRD. J Am Soc Nephrol 19(9):1827–1835. doi:10.1681/ASN.2007050622

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. KDIGO (2009) Clinical practice guidelines for the management of CKD-MBD. Kidney Int 76(S113):S1–S130

    Google Scholar 

  8. West SL, Jamal SA, Lok CE (2012) Tests of neuromuscular function are associated with fractures in patients with chronic kidney disease. Nephrol Dial Transplant 27(6):2384–2388. doi:10.1093/ndt/gfr620

    Article  PubMed  Google Scholar 

  9. Wagner J, Jhaveri KD, Rosen L, Sunday S, Mathew AT, Fishbane S (2014) Increased bone fractures among elderly United States hemodialysis patients. Nephrol Dial Transplant 29(1):146–151. doi:10.1093/ndt/gft352

    Article  PubMed  Google Scholar 

  10. Stehman-Breen CO, Sherrard DJ, Alem AM, Gillen DL, Heckbert SR, Wong CS, Ball A, Weiss NS (2000) Risk factors for hip fracture among patients with end-stage renal disease. Kidney Int 58(5):2200–2205

    Article  CAS  PubMed  Google Scholar 

  11. Justesen J, Stenderup K, Ebbesen EN, Mosekilde L, Steiniche T, Kassem M (2001) Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology 2(3):165–171

    Article  CAS  PubMed  Google Scholar 

  12. Shen W, Chen J, Punyanitya M, Shapses S, Heshka S, Heymsfield SB (2007) MRI-measured bone marrow adipose tissue is inversely related to DXA-measured bone mineral in Caucasian women. Osteoporos Int 18(5):641–647. doi:10.1007/s00198-006-0285-9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Tang GY, Lv ZW, Tang RB, Liu Y, Peng YF, Li W, Cheng YS (2010) Evaluation of MR spectroscopy and diffusion-weighted MRI in detecting bone marrow changes in postmenopausal women with osteoporosis. Clin Radiol 65(5):377–381. doi:10.1016/j.crad.2009.12.011

    Article  CAS  PubMed  Google Scholar 

  14. Hu HH, Kan HE (2013) Quantitative proton MR techniques for measuring fat. NMR Biomed 26(12):1609–1629. doi:10.1002/nbm.3025

    Article  CAS  PubMed  Google Scholar 

  15. Pichardo JC, Milner RJ, Bolch WE (2011) MRI measurement of bone marrow cellularity for radiation dosimetry. J Nucl Med 52(9):1482–1489. doi:10.2967/jnumed.111.087957

    Article  CAS  PubMed  Google Scholar 

  16. Schellinger D, Lin CS, Lim J, Hatipoglu HG, Pezzullo JC, Singer AJ (2004) Bone marrow fat and bone mineral density on proton MR spectroscopy and dual-energy X-ray absorptiometry: their ratio as a new indicator of bone weakening. AJR Am J Roentgenol 183(6):1761–1765

    Article  CAS  PubMed  Google Scholar 

  17. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307–310

    Article  CAS  PubMed  Google Scholar 

  18. Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86(2):420–428

    Article  CAS  PubMed  Google Scholar 

  19. Shen W, Gong X, Weiss J, Jin Y (2013) Comparison among T1-weighted magnetic resonance imaging, modified dixon method, and magnetic resonance spectroscopy in measuring bone marrow fat. J Obes 2013:298675. doi:10.1155/2013/298675

    Article  PubMed Central  PubMed  Google Scholar 

  20. Regis-Arnaud A, Guiu B, Walker PM, Krause D, Ricolfi F, Ben Salem D (2011) Bone marrow fat quantification of osteoporotic vertebral compression fractures: comparison of multi-voxel proton MR spectroscopy and chemical-shift gradient-echo MR imaging. Acta Radiol 52(9):1032–1036. doi:10.1258/ar.2011.100412

    Article  PubMed  Google Scholar 

  21. Burkhardt R, Kettner G, Bohm W, Schmidmeier M, Schlag R, Frisch B, Mallmann B, Eisenmenger W, Gilg T (1987) Changes in trabecular bone, hematopoiesis and bone marrow vessels in aplastic anemia, primary osteoporosis, and old age: a comparative histomorphometric study. Bone 8(3):157–164

    Article  CAS  PubMed  Google Scholar 

  22. Griffith JF, Yeung DK, Antonio GE, Lee FK, Hong AW, Wong SY, Lau EM, Leung PC (2005) Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: dynamic contrast-enhanced MR imaging and MR spectroscopy. Radiology 236(3):945–951. doi:10.1148/radiol.2363041425

    Article  PubMed  Google Scholar 

  23. Griffith JF, Yeung DK, Antonio GE, Wong SY, Kwok TC, Woo J, Leung PC (2006) Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density: MR evaluation. Radiology 241(3):831–838. doi:10.1148/radiol.2413051858

    Article  PubMed  Google Scholar 

  24. Dunnill MS, Anderson JA, Whitehead R (1967) Quantitative histological studies on age changes in bone. J Pathol Bacteriol 94(2):275–291. doi:10.1002/path.1700940205

    Article  CAS  PubMed  Google Scholar 

  25. Rosen CJ, Ackert-Bicknell C, Rodriguez JP, Pino AM (2009) Marrow fat and the bone microenvironment: developmental, functional, and pathological implications. Crit Rev Eukaryot Gene Expr 19(2):109–124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Nuttall ME, Gimble JM (2004) Controlling the balance between osteoblastogenesis and adipogenesis and the consequent therapeutic implications. Curr Opin Pharmacol 4(3):290–294. doi:10.1016/j.coph.2004.03.002

    Article  CAS  PubMed  Google Scholar 

  27. Malluche HH, Mawad HW, Monier-Faugere MC (2011) Renal osteodystrophy in the first decade of the new millennium: analysis of 630 bone biopsies in black and white patients. J Bone Miner Res 26(6):1368–1376. doi:10.1002/jbmr.309

    Article  PubMed Central  PubMed  Google Scholar 

  28. Nickolas TL, Leonard MB, Shane E (2008) Chronic kidney disease and bone fracture: a growing concern. Kidney Int 74(6):721–731. doi:10.1038/ki.2008.264

    Article  PubMed Central  PubMed  Google Scholar 

  29. Nair SS, Mitani AA, Goldstein BA, Chertow GM, Lowenberg DW, Winkelmayer WC (2013) Temporal trends in the incidence, treatment, and outcomes of hip fracture in older patients initiating dialysis in the United States. Clin J Am Soc Nephrol 8(8):1336–1342. doi:10.2215/CJN.10901012

    Article  PubMed Central  PubMed  Google Scholar 

  30. Danese MD, Kim J, Doan QV, Dylan M, Griffiths R, Chertow GM (2006) PTH and the risks for hip, vertebral, and pelvic fractures among patients on dialysis. Am J Kidney Dis 47(1):149–156

    Article  PubMed  Google Scholar 

  31. Coco M, Rush H (2000) Increased incidence of hip fractures in dialysis patients with low serum parathyroid hormone. Am J Kidney Dis 36(6):1115–1121

    Article  CAS  PubMed  Google Scholar 

  32. Moorthi R, Moe S (2013) Recent advances in the non-invasive diagnosis of renal osteodystrophy. Kidney Int 84:886–94. doi:10.1038/ki.2013.254

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Moorthi was supported by a career development award from the American Society of Bone and Mineral Research (ASBMR). Additional funding for the support of this study was from the Indiana Clinical and Translational Sciences Institute funded by the National Institutes of Health, National Center for Advancing Translational Sciences, Clinical and Translational Sciences Award (UL1TR001108).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Moorthi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moorthi, R.N., Fadel, W., Eckert, G.J. et al. Bone marrow fat is increased in chronic kidney disease by magnetic resonance spectroscopy. Osteoporos Int 26, 1801–1807 (2015). https://doi.org/10.1007/s00198-015-3064-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-015-3064-7

Keywords

Navigation