Skip to main content

Advertisement

Log in

Positive Association Between Adipose Tissue and Bone Stiffness

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Obesity is often considered to have a protective effect against osteoporosis. On the other hand, several recent studies suggest that adipose tissue may have detrimental effects on bone quality. We therefore aimed to investigate the associations between body mass index (BMI), waist circumference (WC), visceral adipose tissue (VAT) or abdominal subcutaneous adipose tissue (SAT), and bone stiffness. The study involved 2685 German adults aged 20–79 years, who participated in either the second follow-up of the population-based Study of Health in Pomerania (SHIP-2) or the baseline examination of the SHIP-Trend cohort. VAT and abdominal SAT were quantified by magnetic resonance imaging. Bone stiffness was assessed by quantitative ultrasound (QUS) at the heel (Achilles InSight, GE Healthcare). The individual risk for osteoporotic fractures was determined based on the QUS-derived stiffness index and classified in low, medium, and high risk. Linear regression models, adjusted for sex, age, physical activity, smoking status, risky alcohol consumption, diabetes, and height (in models with VAT or abdominal SAT as exposure), revealed positive associations between BMI, WC, VAT or abdominal SAT, and the QUS variables broadband-ultrasound attenuation or stiffness index. Moreover, BMI was positively associated with speed of sound. Our study shows that all anthropometric measures including BMI and, WC as well as abdominal fat volume are positively associated with bone stiffness in the general population. As potential predictors of bone stiffness, VAT and abdominal SAT are not superior to easily available measures like BMI or WC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hernlund E, Svedbom A, Ivergard M, Compston J, Cooper C, Stenmark J, McCloskey EV, Jonsson B, Kanis JA (2013) Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 8:136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Wellman NS, Friedberg B (2002) Causes and consequences of adult obesity: health, social and economic impacts in the United States. Asia Pac J Clin Nutr 11(Suppl 8):S705–S709

    Article  Google Scholar 

  3. Sanchez-Riera L, Carnahan E, Vos T, Veerman L, Norman R, Lim SS, Hoy D, Smith E, Wilson N, Nolla JM, Chen JS, Macara M, Kamalaraj N, Li Y, Kok C, Santos-Hernandez C, March L (2014) The global burden attributable to low bone mineral density. Ann Rheum Dis 73:1635–1645

    Article  CAS  PubMed  Google Scholar 

  4. Storcksdieck Genannt Bonsmann S, Wills JM (2012) Nutrition labeling to prevent obesity: reviewing the evidence from Europe. Curr Obes Rep 1:134–140

    Article  PubMed Central  PubMed  Google Scholar 

  5. Egger G, Dixon J (2014) Beyond obesity and lifestyle: a review of 21st century chronic disease determinants. Biomed Res Int 2014:731685

    Article  PubMed Central  PubMed  Google Scholar 

  6. Kling JM, Clarke BL, Sandhu NP (2014) Osteoporosis prevention, screening, and treatment: a review. J Womens Health (Larchmt) 23:563–572

    Article  Google Scholar 

  7. Zhao LJ, Jiang H, Papasian CJ, Maulik D, Drees B, Hamilton J, Deng HW (2008) Correlation of obesity and osteoporosis: effect of fat mass on the determination of osteoporosis. J Bone Miner Res 23:17–29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Dimitri P, Bishop N, Walsh JS, Eastell R (2012) Obesity is a risk factor for fracture in children but is protective against fracture in adults: a paradox. Bone 50:457–466

    Article  CAS  PubMed  Google Scholar 

  9. Gourlay ML, Hammett-Stabler CA, Renner JB, Rubin JE (2014) Associations between body composition, hormonal and lifestyle factors, bone turnover, and BMD. J Bone Metab 21:61–68

    Article  PubMed Central  PubMed  Google Scholar 

  10. Yang S, Nguyen ND, Center JR, Eisman JA, Nguyen TV (2013) Association between abdominal obesity and fracture risk: a prospective study. J Clin Endocrinol Metab 98:2478–2483

    Article  CAS  PubMed  Google Scholar 

  11. Yoo HJ, Park MS, Yang SJ, Kim TN, Lim KI, Kang HJ, Song W, Baik SH, Choi DS, Choi KM (2012) The differential relationship between fat mass and bone mineral density by gender and menopausal status. J Bone Miner Metab 30:47–53

    Article  PubMed  Google Scholar 

  12. Wang L, Wang W, Xu L, Cheng X, Ma Y, Liu D, Guo Z, Su Y, Wang Q (2013) Relation of visceral and subcutaneous adipose tissue to bone mineral density in chinese women. Int J Endocrinol 2013:378632

    PubMed Central  PubMed  Google Scholar 

  13. Campos RM, Lazaretti-Castro M, Mello MT, Tock L, Silva PL, Corgosinho FC, Carnier J, Piano A, Sanches PL, Masquio DC, Tufik S, Damaso AR (2012) Influence of visceral and subcutaneous fat in bone mineral density of obese adolescents. Arq Bras Endocrinol Metabol 56:12–18

    PubMed  Google Scholar 

  14. Ng AC, Melton LJ 3rd, Atkinson EJ, Achenbach SJ, Holets MF, Peterson JM, Khosla S, Drake MT (2013) Relationship of adiposity to bone volumetric density and microstructure in men and women across the adult lifespan. Bone 55:119–125

    Article  PubMed Central  PubMed  Google Scholar 

  15. Cohen A, Dempster DW, Recker RR, Lappe JM, Zhou H, Zwahlen A, Muller R, Zhao B, Guo X, Lang T, Saeed I, Liu XS, Guo XE, Cremers S, Rosen CJ, Stein EM, Nickolas TL, McMahon DJ, Young P, Shane E (2013) Abdominal fat is associated with lower bone formation and inferior bone quality in healthy premenopausal women: a transiliac bone biopsy study. J Clin Endocrinol Metab 98:2562–2572

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Chung W, Lee J, Ryu OH (2013) Is the negative relationship between obesity and bone mineral content greater for older women? J Bone Miner Metab 32:503–513

    Google Scholar 

  17. John U, Greiner B, Hensel E, Ludemann J, Piek M, Sauer S, Adam C, Born G, Alte D, Greiser E, Haertel U, Hense HW, Haerting J, Willich S, Kessler C (2001) Study of Health in Pomerania (SHIP): a health examination survey in an east German region: objectives and design. Soz Praventivmed 46:186–194

    Article  CAS  PubMed  Google Scholar 

  18. Volzke H, Alte D, Schmidt CO, Radke D, Lorbeer R, Friedrich N, Aumann N, Lau K, Piontek M, Born G, Havemann C, Ittermann T, Schipf S, Haring R, Baumeister SE, Wallaschofski H, Nauck M, Frick S, Arnold A, Junger M, Mayerle J, Kraft M, Lerch MM, Dorr M, Reffelmann T, Empen K, Felix SB, Obst A, Koch B, Glaser S, Ewert R, Fietze I, Penzel T, Doren M, Rathmann W, Haerting J, Hannemann M, Ropcke J, Schminke U, Jurgens C, Tost F, Rettig R, Kors JA, Ungerer S, Hegenscheid K, Kuhn JP, Kuhn J, Hosten N, Puls R, Henke J, Gloger O, Teumer A, Homuth G, Volker U, Schwahn C, Holtfreter B, Polzer I, Kohlmann T, Grabe HJ, Rosskopf D, Kroemer HK, Kocher T, Biffar R, John U, Hoffmann W (2010) Cohort profile: the study of health in Pomerania. Int J Epidemiol 40:294–307

    Article  PubMed  Google Scholar 

  19. Muller HP, Raudies F, Unrath A, Neumann H, Ludolph AC, Kassubek J (2011) Quantification of human body fat tissue percentage by MRI. NMR Biomed 24:17–24

    Article  PubMed  Google Scholar 

  20. Levey AS, Greene T, Kusek JW, Beck GJ (2000) A simplified equation to predict glomerular filtration rate from serum creatinine (abstract). J Am Soc Nephrol 11:A0828

    Google Scholar 

  21. De Laet C, Kanis JA, Oden A, Johanson H, Johnell O, Delmas P, Eisman JA, Kroger H, Fujiwara S, Garnero P, McCloskey EV, Mellstrom D, Melton LJ 3rd, Meunier PJ, Pols HA, Reeve J, Silman A, Tenenhouse A (2005) Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int 16:1330–1338

    Article  PubMed  Google Scholar 

  22. Park JH, Song YM, Sung J, Lee K, Kim YS, Kim T, Cho SI (2012) The association between fat and lean mass and bone mineral density: the Healthy Twin Study. Bone 50:1006–1011

    Article  PubMed  Google Scholar 

  23. Gnudi S, Sitta E, Fiumi N (2007) Relationship between body composition and bone mineral density in women with and without osteoporosis: relative contribution of lean and fat mass. J Bone Miner Metab 25:326–332

    Article  PubMed  Google Scholar 

  24. Bleicher K, Cumming RG, Naganathan V, Travison TG, Sambrook PN, Blyth FM, Handelsman DJ, Le Couteur DG, Waite LM, Creasey HM, Seibel MJ (2011) The role of fat and lean mass in bone loss in older men: findings from the CHAMP study. Bone 49:1299–1305

    Article  PubMed  Google Scholar 

  25. Katzmarzyk PT, Barreira TV, Harrington DM, Staiano AE, Heymsfield SB, Gimble JM (2012) Relationship between abdominal fat and bone mineral density in white and African American adults. Bone 50:576–579

    Article  PubMed Central  PubMed  Google Scholar 

  26. Bhupathiraju SN, Dawson-Hughes B, Hannan MT, Lichtenstein AH, Tucker KL (2011) Centrally located body fat is associated with lower bone mineral density in older Puerto Rican adults. Am J Clin Nutr 94:1063–1070

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Kim KC, Shin DH, Lee SY, Im JA, Lee DC (2010) Relation between obesity and bone mineral density and vertebral fractures in Korean postmenopausal women. Yonsei Med J 51:857–863

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Zhao LJ, Liu YJ, Liu PY, Hamilton J, Recker RR, Deng HW (2007) Relationship of obesity with osteoporosis. J Clin Endocrinol Metab 92:1640–1646

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Hsu YH, Venners SA, Terwedow HA, Feng Y, Niu T, Li Z, Laird N, Brain JD, Cummings SR, Bouxsein ML, Rosen CJ, Xu X (2006) Relation of body composition, fat mass, and serum lipids to osteoporotic fractures and bone mineral density in Chinese men and women. Am J Clin Nutr 83:146–154

    CAS  PubMed  Google Scholar 

  30. Krieg MA, Barkmann R, Gonnelli S, Stewart A, Bauer DC, Del Rio Barquero L, Kaufman JJ, Lorenc R, Miller PD, Olszynski WP, Poiana C, Schott AM, Lewiecki EM, Hans D (2008) Quantitative ultrasound in the management of osteoporosis: the 2007 ISCD Official Positions. J Clin Densitom 11:163–187

    Article  PubMed  Google Scholar 

  31. Donnelly E (2011) Methods for assessing bone quality: a review. Clin Orthop Relat Res 469:2128–2138

    Article  PubMed Central  PubMed  Google Scholar 

  32. Chin KY, Ima-Nirwana S (2013) Calcaneal quantitative ultrasound as a determinant of bone health status: what properties of bone does it reflect? Int J Med Sci 10:1778–1783

    Article  PubMed Central  PubMed  Google Scholar 

  33. Gonnelli S, Cepollaro C, Gennari L, Montagnani A, Caffarelli C, Merlotti D, Rossi S, Cadirni A, Nuti R (2005) Quantitative ultrasound and dual-energy X-ray absorptiometry in the prediction of fragility fracture in men. Osteoporos Int 16:963–968

    Article  PubMed  Google Scholar 

  34. Briot K, Roux C (2005) What is the role of DXA, QUS and bone markers in fracture prediction, treatment allocation and monitoring? Best Pract Res Clin Rheumatol 19:951–964

    Article  PubMed  Google Scholar 

  35. Browning LM, Mugridge O, Dixon AK, Aitken SW, Prentice AM, Jebb SA (2011) Measuring abdominal adipose tissue: comparison of simpler methods with MRI. Obes Facts 4:9–15

    Article  PubMed  Google Scholar 

  36. Carroll JF, Chiapa AL, Rodriquez M, Phelps DR, Cardarelli KM, Vishwanatha JK, Bae S, Cardarelli R (2008) Visceral fat, waist circumference, and BMI: impact of race/ethnicity. Obesity (Silver Spring) 16:600–607

    Article  Google Scholar 

  37. Redmond J, Jarjou LM, Zhou B, Prentice A, Schoenmakers I (2014) Ethnic differences in calcium, phosphate and bone metabolism. Proc Nutr Soc 73:340–351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Kroke A, Klipstein-Grobusch K, Bergmann MM, Weber K, Boeing H (2000) Influence of body composition on quantitative ultrasound parameters of the os calcis in a population-based sample of pre- and postmenopausal women. Calcif Tissue Int 66:5–10

    Article  CAS  PubMed  Google Scholar 

  39. Gonnelli S, Caffarelli C, Tanzilli L, Merlotti D, Gennari L, Rossi S, Lucani B, Campagna MS, Franci B, Nuti R (2011) The association of body composition and sex hormones with quantitative ultrasound parameters at the calcaneus and phalanxes in elderly women. Calcif Tissue Int 89:456–463

    Article  CAS  PubMed  Google Scholar 

  40. Evans AL, Paggiosi MA, Eastell R, Walsh JS (2014) Bone density, microstructure and strength in obese and normal weight men and women in younger and older adulthood. J Bone Miner Res 30:920–928

    Article  Google Scholar 

  41. Edwards MH, Jameson K, Denison H, Harvey NC, Sayer AA, Dennison EM, Cooper C (2013) Clinical risk factors, bone density and fall history in the prediction of incident fracture among men and women. Bone 52:541–547

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Wajchenberg BL, Giannella-Neto D, da Silva ME, Santos RF (2002) Depot-specific hormonal characteristics of subcutaneous and visceral adipose tissue and their relation to the metabolic syndrome. Horm Metab Res 34:616–621

    Article  CAS  PubMed  Google Scholar 

  43. Shapses SA, Sukumar D (2012) Bone metabolism in obesity and weight loss. Annu Rev Nutr 32:287–309

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Cao JJ (2011) Effects of obesity on bone metabolism. J Orthop Surg Res 6:30

    Article  PubMed Central  PubMed  Google Scholar 

  45. Reid IR (2010) Fat and bone. Arch Biochem Biophys 503:20–27

    Article  CAS  PubMed  Google Scholar 

  46. Motyl KJ, Rosen CJ (2012) Understanding leptin-dependent regulation of skeletal homeostasis. Biochimie 94:2089–2096

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

SHIP is part of the Community Medicine Research net of the University of Greifswald, Germany, which is funded by the Federal Ministry of Education and Research (Grant Nos. 01ZZ9603, 01ZZ0103, and 01ZZ0403), the Ministry of Cultural Affairs as well as the Social Ministry of the Federal State of Mecklenburg-West Pomerania. This work is also part of the research project Greifswald Approach to Individualized Medicine (GANI_MED), which is funded by the Federal Ministry of Education and Research and the Ministry of Cultural Affairs of the Federal State of Mecklenburg–West Pomerania (03IS2061A).

Conflict of interest

R. M. Berg, H. Wallaschofski, M. Nauck, R. Rettig, M. R. P. Markus, R. Laqua, N. Friedrich, and A. Hannemann declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All procedures performed in SHIP-2 and SHIP-2 were approved by the ethics committee of the University of Greifswald and were in accordance with the ethical standards of the 1964 Helsinki declaration and its later amendments. All participants provided written informed consent.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hannemann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berg, R.M., Wallaschofski, H., Nauck, M. et al. Positive Association Between Adipose Tissue and Bone Stiffness. Calcif Tissue Int 97, 40–49 (2015). https://doi.org/10.1007/s00223-015-0008-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-015-0008-3

Keywords

Navigation