Skip to main content

Advertisement

Log in

Medicinal Plants with Multiple Effects on Diabetes Mellitus and Its Complications: a Systematic Review

  • Pharmacologic Treatment of Type 2 Diabetes (HE Lebovitz and G Bahtiyar, Section Editors)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This systematic review describes evidence concerning medicinal plants that, in addition to exerting hypoglycemic effects, decrease accompanying complications such as nephropathy, neuropathy, retinopathy, hypertension, and/or hyperlipidemia among individuals with diabetes mellitus (DM).

Recent Findings

Studies on the antidiabetic mechanisms of medicinal plants have shown that most of them produce hypoglycemic activity by stimulating insulin secretion, augmenting peroxisome proliferator-activated receptors (PPARs), inhibiting α-amylase or α-glucosidase, glucagon-like peptide-1 (GLP-1) secretion, advanced glycation end product (AGE) formation, free radical scavenging plus antioxidant activity (against reactive oxygen or nitrogen species (ROS/RNS)), up-regulating or elevating translocation of glucose transporter type 4 (GLUT-4), and preventing development of insulin resistance.

Summary

Not only are medicinal plants effective in DM, but many of them also possess a variety of effects on other disease states, including the complications of DM. Such plants may be appropriate alternatives or adjuncts to available antidiabetic medications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major Importance

  1. World Health Organization. Global report on diabetes. ISBN 978 92 4 156525 7 (NLM classification: WK 810). 2016.

  2. Mahmoudian-Sani MR, Luther T, Asadi-Samani M, et al. A new approach for treatment of type 1 diabetes: phytotherapy and phytopharmacology of regulatory T cells. J Renal Inj Prev. 2017;6(3):158–63.

    Article  Google Scholar 

  3. Norhammar A, Tenerz A, Nilsson G, et al. Glucose metabolism in patients with acute myocardial infarction and no previous diagnosis of diabetes mellitus: a prospective study. Lancet. 2002;359(9324):2140–4.

    Article  CAS  PubMed  Google Scholar 

  4. American Diabetic Association. 2018. http://www.diabetes.org/diabetes-basics/statistics/. Accessed 29 June 2018..

  5. WHO. WHO fact sheet detail. 2017. http://www.who.int/news-room/fact-sheets/detail/diabetes. Accessed 29 June 2018.

  6. Herman WH. The global burden of diabetes: an overview. In: Dagogo-Jack S, editor. Diabetes mellitus in developing countries and underserved communities. Cham: Springer; 2017. p. 1–5. ISBN 978-3-319-41557-4.

    Google Scholar 

  7. Amiri M. Oxidative stress and free radicals in liver and kidney diseases; an updated short-review. J Nephropathol. 2018;7(3):127–31.

    Article  Google Scholar 

  8. Rahimpour S, Dehkordi AD. Antioxidant defense system versus 8-hydroxy-2′-deoxyguanosine; a short look to recent findings. J Renal Inj Prev. 2018;7(3):121–3.

    Article  Google Scholar 

  9. Li WL, Zheng HC, Bukuru J, et al. Natural medicines used in traditional Chinese medical system for therapy of diabetic mellitus. J Ethnopharmacol. 2004;92:1–21.

    Article  CAS  PubMed  Google Scholar 

  10. Gourgari E, Wilhem EE, Hassanzadeh H, et al. A comprehensive review of the FDA-approved labels of diabetes drugs: Indications, safety, and emerging cardiovascular safety data. J Diabetes Comp. 2017;31:1719–27.

    Article  Google Scholar 

  11. Gardner DG, Shoback D. Greenspan’s basic & clinical endocrinology. 9th ed. New York: McGraw-Hill Medical; 2013. p. 7–14.

    Google Scholar 

  12. Amiri M. Type 2 diabetes mellitus; an international challenge. Ann Res Dial. 2016;1(1):e04.

    Google Scholar 

  13. Tavafi M. Diabetic nephropathy and antioxidants. J Nephropathol. 2013;2(1):20–7.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Baradaran A. The role of biomarkers to detect progression of diseases. J Negat Results Clin Exp Stud. 2018;1(1):e05.

    Google Scholar 

  15. Hajian S. Positive effect of antioxidants on immune system. Immunopathol Persa. 2015;1(1):e02.

    Google Scholar 

  16. Fabricant DS, Farnsworth NR. The value of plants used in traditional medicine for drug discovery. Environ Health Perspect. 2001;109(1):69–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. World Health Organisation. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia [Internet]. 2006. Available from: http://www.who.int/diabetes/publications/diagnosis_diabetes2006/en/.

  18. Aghadavoud E, Nasri H, Amiri M. Molecular signaling pathways of diabetic kidney disease; new concepts. J Prev Epidemiol. 2017;2(2):e03.

    Google Scholar 

  19. Nasri H, Shirzad H. Toxicity and safety of medicinal plants. J Herbmed Plarmacol. 2013;2(2):21–2.

    Google Scholar 

  20. Governa, P, Baini, G, Borgonetti, V, Cettolin, G, Giachetti, D, Magnano, AR, Miraldi, E, Biagi, M. Phytotherapy in the management of diabetes: a review. Molecules. 2018;23(1).

  21. Ota A, Ulrih NP. An overview of herbal products and secondary metabolites used for management of type two diabetes. Front. Pharmacol. 2017;8:1–14.

    Article  Google Scholar 

  22. Zhou J, Chan L, Zhou S. Trigonelline: a plant alkaloid with therapeutic potential for diabetes and central nervous system disease. Curr Med Chem. 2012;19:3523–31.

    Article  CAS  PubMed  Google Scholar 

  23. Kalailingam P, Kannaian B, Tamilmani E, Kaliaperumal R. Efficacy of natural diosgenin on cardiovascular risk, insulin secretion, and beta cells in streptozotocin (STZ)-induced diabetic rats. Phytomedicine. 2014;21:1154–61.

    Article  CAS  PubMed  Google Scholar 

  24. Broca C, Manteghetti M, Gross R, Baissac Y, Jacob M, Petit P, et al. 4-Hydroxyisoleucine: Effects of synthetic and natural analogues on insulin secretion. Eur. J. Pharmacol. 2000;390:339–45.

    Article  CAS  PubMed  Google Scholar 

  25. Uemura T, Hirai S, Mizoguchi N, Goto T, Lee JY, Taketani K, et al. Diosgenin present in fenugreek improves glucose metabolism by promoting adipocyte differentiation and inhibiting inflammation in adipose tissues. Mol Nutr Food Res. 2010;54:1596–608.

    Article  CAS  PubMed  Google Scholar 

  26. Kumari K, Augusti KT. Antidiabetic and antioxidant effects of S-methyl cysteine sulfoxide isolated from onions (Allium cepa Linn) as compared to standard drugs in alloxan diabetic rats. Indian J Exp Biol. 2002;40:1005–9.

    CAS  PubMed  Google Scholar 

  27. Chuang C-Y, Hsu C, Chao C-Y, Wein Y-S, Kuo Y-H, Huang C. Fractionation and identification of 9c, 11t, 13t-conjugated linolenic acid as an activator of PPARalpha in bitter gourd (Momordica charantia L.). J Biomed Sci. 2006;13:763–72.

    Article  CAS  PubMed  Google Scholar 

  28. Sasa M, Inoue I, Shinoda Y, Takahashi S, Seo M, Komoda T, et al. Activating effect of momordin, extract of bitter melon (Momordica Charantia L.), on the promoter of human PPARdelta. J Atheroscler Thromb. 2009;16:888–92.

    Article  CAS  PubMed  Google Scholar 

  29. Kumar DB, Mitra A, Manjunatha M. Azadirachtolide. Pharmacogn Commun. 2011;1:78–84.

    Article  CAS  Google Scholar 

  30. Ponnusamy S, Haldar S, Mulani F, Zinjarde S, Thulasiram H, RaviKumar A. Gedunin and Azadiradione: human pancreatic alpha-amylase inhibiting limonoids from Neem (Azadirachta indica) as anti-diabetic agents. PLoS ONE. 2015;10:e0140113.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Perez-Gutierrez RM, Damian-Guzman M. Meliacinolin: a potent alpha-glucosidase and alpha-amylase inhibitor isolated from Azadirachta indica leaves and in vivo antidiabetic property in streptozotocin-nicotinamide-induced type 2 diabetes in mice. Biol Pharm Bull. 2012;35:1516–24.

    Article  CAS  PubMed  Google Scholar 

  32. Adisakwattana S, Lerdsuwankij O, Poputtachai U, Minipun A, Suparpprom C. Inhibitory activity of cinnamon bark species and their combination effect with acarbose against intestinal alpha-glucosidase and pancreatic alpha-amylase. Plant Foods Hum Nutr. 2011;66:143–8.

    Article  CAS  PubMed  Google Scholar 

  33. Kim SH, Hyun SH, Choung SY. Anti-diabetic effect of cinnamon extract on blood glucose in db/db mice. J Ethnopharmacol. 2006;104:119–23.

    Article  PubMed  Google Scholar 

  34. Kim S-H, Jo S-H, Kwon Y-I, Hwang J-K. Effects of onion (Allium cepa L.) extract administration on intestinal α-glucosidases activities and spikes in postprandial blood glucose levels in SD rats model. Int J Mol Sci. 2011;12:3757–69.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Liu C, Zhang M, Hu M-Y, Guo H-F, Li J, Yu Y-L, et al. Increased glucagon-like peptide-1 secretion may be involved in antidiabetic effects of ginsenosides. J Endocrinol. 2013;217:185–96.

    Article  CAS  PubMed  Google Scholar 

  36. Kim KS, Jang HJ. Medicinal plants qua glucagon-like peptide-1 secretagogue via intestinal nutrient sensors. Evid Based Complement Alternat Med. 2015;2015:171742. https://doi.org/10.1155/2015/171742.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Choi H-J, Jang H-J, Chung T-W, Jeong S-I, Cha J, Choi J-Y, et al. Catalpol suppresses advanced glycation end-products-induced inflammatory responses through inhibition of reactive oxygen species in human monocytic THP-1 cells. Fitoterapia. 2013;86:19–28.

    Article  CAS  PubMed  Google Scholar 

  38. Perez Gutierrez RM, de Jesus Martinez Ortiz M. Beneficial effect of Azadirachta indica on advanced glycation end-product in streptozotocin-diabetic rat. Pharm Biol. 2014;52(11):1435–44. https://doi.org/10.3109/13880209.2014.895389.

    Article  PubMed  Google Scholar 

  39. Dzib-Guerra WD, Escalante-Erosa F, García-Sosa K, Derbré S, Blanchard P, Richomme P, et al. Anti-advanced glycation end-product and free radical scavenging activity of plants from the Yucatecan flora. Pharmacognosy Res. 2016;8(4):276–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Baek G-H, Jang Y-S, Jeong S-I, Cha J, Joo M, Shin S-W, et al. Rehmannia glutinosa suppresses inflammatory responses elicited by advanced glycation end products. Inflammation. 2012;35:1232–41.

    Article  PubMed  Google Scholar 

  41. Ravikumar P, Anuradha CV. Effect of fenugreek seeds on blood lipid peroxidation and antioxidants in diabetic rats. Phytother Res. 1999;13:197–201.

    Article  CAS  PubMed  Google Scholar 

  42. Son IS, Kim JH, Sohn HY, Son KH, Kim J-S, Kwon C-S. Antioxidative and hypolipidemic effects of diosgenin, a steroidal saponin of yam (Dioscorea spp.), on high-cholesterol fed rats. Biosci. Biotechnol. Biochem. 2007;71:3063–71.

    Article  CAS  PubMed  Google Scholar 

  43. Yang N, Chen P, Tao Z, Zhou N, Gong X, Xu Z, et al. Beneficial effects of ginsenoside-Rg1 on ischemia-induced angiogenesis in diabetic mice. Acta Biochim Biophys Sin. 2012;44:999–1005.

    Article  CAS  PubMed  Google Scholar 

  44. Kang KS, Yamabe N, Kim HY, Park JH, Yokozawa T. Therapeutic potential of 20(S)-ginsenoside Rg(3) against streptozotocin-induced diabetic renal damage in rats. Eur J Pharmacol. 2008;591:266–72.

    Article  CAS  PubMed  Google Scholar 

  45. Ma J, Whittaker P, Keller AC, Mazzola EP, Pawar RS, White KD, et al. Cucurbitane-type triterpenoids from. Planta Med. 2010;76:1758–61.

    Article  CAS  PubMed  Google Scholar 

  46. Tan M-J, Ye J-M, Turner N, Hohnen-Behrens C, Ke C-Q, Tang C-P, et al. Antidiabetic activities of triterpenoids isolated from bitter melon associated with activation of the AMPK pathway. Chem Biol. 2008;15:263–73.

    Article  CAS  PubMed  Google Scholar 

  47. Cheng H-L, Huang H-K, Chang C-I, Tsai C-P, Chou C-H. A cell-based screening identifies compounds from the stem of Momordica charantia that overcome insulin resistance and activate AMP-activated protein kinase. J Agric Food Chem. 2008;56:6835–43.

    Article  CAS  PubMed  Google Scholar 

  48. Chang C-I, Tseng H-I, Liao Y-W, Yen C-H, Chen T-M, Lin C-C, et al. In vivo and in vitro studies to identify the hypoglycaemic constituents of wild variant WB24. Food Chem. 2011;125:521–8.

    Article  CAS  Google Scholar 

  49. Gautam S, Pal S, Maurya R, Srivastava AK. Ethanolic extract of stimulates glucose transporter type 4-mediated glucose uptake by the activation of insulin signaling. Planta Med. 2015;81:208–14.

    Article  CAS  PubMed  Google Scholar 

  50. Cao H, Polansky MM, Anderson RA. Cinnamon extract and polyphenols affect the expression of tristetraprolin, insulin receptor, and glucose transporter 4 in mouse 3T3-L1 adipocytes. Arch Biochem Biophys. 2007;459:214–22.

    Article  CAS  PubMed  Google Scholar 

  51. Anand P, Murali KY, Tandon V, Murthy PS, Chandra R. Insulinotropic effect of cinnamaldehyde on transcriptional regulation of pyruvate kinase, phosphoenolpyruvate carboxykinase, and GLUT4 translocation in experimental diabetic rats. Chem. Biol. Interact. 2010;186:72–81.

    Article  CAS  PubMed  Google Scholar 

  52. Lai D-M, Tu Y-K, Liu I-M, Chen P-F, Cheng J-T. Mediation of beta-endorphin by ginsenoside Rh2 to lower plasma glucose in streptozotocin-induced diabetic rats. Planta Med. 2006;72:9–13.

    Article  CAS  PubMed  Google Scholar 

  53. Chattopadhyay RR. Hypoglycemic effect of Ocimum sanctum leaf extract in normal and streptozotocin diabetic rats. Indian J. Exp. Biol. 1993;31:891–3.

    CAS  PubMed  Google Scholar 

  54. Shih C-C, Lin C-H, Lin W-L. Effects of Momordica charantia on insulin resistance and visceral obesity in mice on high-fat diet. Diabetes Res Clin Pract. 2008;81:134–43.

    Article  CAS  PubMed  Google Scholar 

  55. Asadi-Samani MA, Moradi MT, Mahmoodnia L, et al. Traditional uses of medicinal plants to prevent and treat diabetes; an updated review of ethnobotanical studies in Iran. J Nephropathol. 2017;6(3):118–25.

    Article  PubMed Central  PubMed  Google Scholar 

  56. • Pakkir Maideen NM, Balasubramaniam R. Pharmacologically relevant drug interactions of sulfonylurea antidiabetics with common herbs. J Herbmed Pharmacol. 2018;7(3):200–10. https://doi.org/10.15171/jhp.2018.32. This article presents a list of herbal drugs having interacting potentials with sulfonylurea anti-diabetics. This subject has high level of clinical and investigational implications.

    Article  Google Scholar 

  57. Akbari R, Javaniyan M, Fahimi A, et al. Renal function in patients with diabetic foot infection; does antibiotherapy affect it? J Renal Inj Prev. 2017;6(2):117–21.

    Article  CAS  PubMed  Google Scholar 

  58. Tedong L, Dimo T, Dzeufiet PDD, Asongalem AE, Sokeng DS, Callard P, et al. Antihyperglycemic and renal protective activities of Anacardium occidentale (Anacardiaceae) leaves in streptozotocin induced diabetic rats. Afr J Trad CAM. 2006;3(1):23–35.

    Google Scholar 

  59. Schempp C, Schöpf E, Simon J. Plant-induced toxic and allergic dermatitis (phytodermatitis). Hautarzt. 2002;53(2):93–7.

    Article  CAS  PubMed  Google Scholar 

  60. Boswell-Ruys CL, Ritchie HE, Brown-Woodman PD. Preliminary screening study of reproductive outcomes after exposure to yarrow in the pregnant rat. Birth Defects Res B Dev Reprod Toxicol. 2003;68(5):416–20.

    Article  CAS  PubMed  Google Scholar 

  61. Elmastas M, Ozturk L, Gokce I, et al. Determination of antioxidant activity of marshmallow flower (Althaea officinalis L.). Anal Lett. 2004;37(9):1859–69.

    Article  CAS  Google Scholar 

  62. •• Rouhi-Boroujeni H, Heidarian E, Rouhi-Boroujeni H, et al. Medicinal plants with multiple effects on cardiovascular diseases: a systematic review. Current Pharmaceutical Design. 2017;23:1–17. This article introduces medicinal plants that other than cardiovascular disease are effective on its risk factors such as hyperlipidemia, obesity, hypertension, and diabetes mellitus.

    Article  CAS  Google Scholar 

  63. Arnault I, Auger J. Seleno-compounds in garlic and onion. J Chromatogr A. 2006;1112(1–2):23–30.

    Article  CAS  PubMed  Google Scholar 

  64. Matsga S, Azuma K, Watnabe M, et al. Onion peel tea ameliorates obesity and affects blood parameters in a mouse model of high-fat-diet-induced obesity. Exp Ther Med. 2014;7(2):379–82.

    Article  Google Scholar 

  65. Heidarian E, Jafari-Dehkordi E, Seidkhani-Nahal A. Effect of garlic on liver phosphatidate phosphohydrolase and plasma lipid levels in hyperlipidemic rats. Food Chem Toxicol. 2011;49(5):1110–4.

    Article  CAS  PubMed  Google Scholar 

  66. Durak I, Kavutcu M, Aytac B, et al. Effects of garlic extract consumption on blood lipid and oxidant/antioxidant parameters in humans with high blood cholesterol. J Nutr Biochem. 2004;15(6):373–7.

    Article  CAS  PubMed  Google Scholar 

  67. Prabjone R, Thong-Ngam D, Wisedopas N, et al. Anti-inflammatory effects of Aloe vera on leukocyteendothelium interaction in the gastric microcirculation of Helicobacter pylori-infected rats. Clin Hemorheol Microcirc. 2006;35(3):359–66.

    PubMed  Google Scholar 

  68. Im SA, Lee YR, Lee YH, et al. In vivo evidence of the immunomodulatory activity of orally administered Aloe vera gel. Arch Pharm Res. 2010;33(3):451–6.

    Article  CAS  PubMed  Google Scholar 

  69. Rajasekaran S, Sivagnanam K, Subramanian S. Antioxidant effect of Aloe vera gel extract in streptozotocin-induced diabetes in rats. Pharmacol Rep. 2005;57(1):90–6.

    PubMed  Google Scholar 

  70. Rajasekaran S, Sivagnanam K, Subramanian S. Modulatory effects of Aloe vera leaf gel extract on oxidative stress in rats treated with streptozotocin. J Pharm Pharmacol. 2005;57(2):241–6.

    Article  CAS  PubMed  Google Scholar 

  71. Bolkent S, Akev N, Ozsoy N, et al. Effect of Aloe vera (L.) Burm. fil. leaf gel and pulp extracts on kidney in type-II diabetic rat models. Indian J Exp Biol. 2004;42(1):48–52.

    PubMed  Google Scholar 

  72. Chithra P, Sajithlal GB, Chandrakasan G. Influence of aloe vera on the healing of dermal wounds in diabetic rats. J Ethnopharmacol. 1998;59(3):205–1.

    Google Scholar 

  73. Budzinski J, Trudeau V, Drouin C, et al. Modulation of human cytochrome P450 3A4 (CYP3A4) and pglycoprotein (P-gp) in Caco-2 cell monolayers by selected commercial-source milk thistle and goldenseal products. Can J Physiol Pharmacol. 2007;85(9):966–78.

    Article  CAS  PubMed  Google Scholar 

  74. Bahramikia S, Yazdanparast R. Efficacy of different fractions of leaves on serum lipoproteins and serum and liver oxidative status in experimentally induced hypercholesterolaemic rat models. Am J Chin Med. 2009;37(4):685–99.

    Article  PubMed  Google Scholar 

  75. Li R, Zhang J, Zhang L, Cui Q, Liu H. Angelica injection promotes peripheral nerve structure and function recovery with increased expressions of nerve growth factor and brain derived neurotrophic factor in diabetic rats. Curr Neurovasc Res. 2010;7(3):213–22.

    Article  CAS  PubMed  Google Scholar 

  76. Watt G. Periodical experts: a dictionary of the economical products of India. Delhi: Cosmo Publications; 1972. p. 260.

    Google Scholar 

  77. Gupta RK, Kesari AN, Murthy PS, et al. Hypoglycemic and antidiabetic effect of ethanolic extract of leaves of Annona squamosa L. in experimental animals. J Ethnopharmacol. 2005;99(1):75–81.

    Article  PubMed  Google Scholar 

  78. Adewole SO, Caxton-Martins EA. Morphological changes and hypoglycemic effects of Annona muricata Linn (Annonaceae) leaf aqueous extract on pancreatic B-cells of streptozotocin-treated diabetic rats. Afr J Biomed Res. 2006;9:173–87.

    Google Scholar 

  79. Liu ZQ, Li QZ, Qin GJ. Effect of Astragalus injection on platelet function and plasma endothelin in patients with early stage diabetic nephropathy. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2001;21(4):274–6.

    CAS  PubMed  Google Scholar 

  80. Liu KZ, Li JB, Lu HL, et al. Effects of Astragalus and saponins of Panax notoginseng on MMP-9 in patients with type 2 diabetic macroangiopathy. Zhongguo Zhong Yao Za Zhi. 2004;29(3):264–6.

    PubMed  Google Scholar 

  81. Chen W, Li YM, Yu MH. Astragalus polysaccharides: an effective treatment for diabetes prevention in NOD mice. Exp Clin Endocrinol Diabetes. 2008;116(8):468–74.

    Article  CAS  PubMed  Google Scholar 

  82. Zhang J, Xie X, Li C, Fu P. Systematic review of the renal protective effect of Astragalus membranaceus (root) on diabetic nephropathy in animal models. J Ethnopharmacol. 2009;126(2):189–96.

    Article  CAS  PubMed  Google Scholar 

  83. Rouhi-Boroujeni H, Rouhi-Boroujeni HA, Heidarian E, et al. Herbs with antilipid effects and their interactions with statins as a chemical anti- hyperlipidemia group drugs: a systematic review. ARYA Atheroscler. 2015;11(4):252–8.

    Google Scholar 

  84. Mirhosseini M, Baradaran A, Rafieian-Kopaei M. Anethum graveolens and hyperlipidemia: a randomized clinical trial. J Res Med Sci. 2014;19(8):758–61.

    PubMed Central  PubMed  Google Scholar 

  85. Sujatha G, Ranjitha Kumari BD. Effect of phytohormones on micropropagation of Artemisia vulgaris L. Acta Physiologiae Plantarum. 2007;29(3):189–95.

    Article  CAS  Google Scholar 

  86. Singh R, Subrata DE, Belkheir A. Avena sativa (oat), a potential neutraceutical and therapeutic agent: an overview. Crit Rev Food Sci Nutr. 2013;53:126–44.

    Article  CAS  PubMed  Google Scholar 

  87. Heidarian E, Rafieian-Kopaei M, Khoshdel A, et al. Metabolic effects of berberine on liver phosphatidate phosphohydrolase in rats fed on high lipogenic diet: an additional mechanism for the hypolipidemic effects of berberine. Asian Pacific J Trop Biomed. 2014;31(4):S429–35.

    Article  Google Scholar 

  88. Ebrahimi-Mamaghani M, Arefhosseini SR, Golzar M, et al. Longterm effects of processed berberis vulgaris on some metabolic syndrome components. Canadian J Forest Res. 2009;39(11):2109–18.

    Article  CAS  Google Scholar 

  89. Nadkarni KM. Indian Materia Medica. 3rd ed. Mumbai: Popular Book Depot; 1954. p. 202–7.

    Google Scholar 

  90. Rao KN, Krishna MB, Srinivas N. Effect of chronic administration of Boerhaavia diff usa Linn. leaf extract on experimental diabetes in rats. Trop J Pharma Res. 2004;3:305–9.

    Google Scholar 

  91. Upaganlawar H, Ghule B. Pharmacological activities of Boswellia serrata Roxb.—mini review. Ethnobotanical Leaflets. 2009;13:766–74.

    Google Scholar 

  92. Purohit A, Sharma A. Blood glucose lowering potential of Bougainvillea spectabilis leaf extract in streptozotocin induced type-I diabetic albino rats. Indian Drugs. 2006;43:538.

    Google Scholar 

  93. Addae MI, Achenbach H. Terpenoids and flavonoids of Bridelia ferruginea. Phytochemistry. 1985;24(8):1817–9.

    Article  Google Scholar 

  94. Ribaldo PDB, Souza DS, Biswas SK, et al. Green tea (Camellia sinensis) attenuates nephropathy by downregulating nox4 NADPH oxidase in diabetic spontaneously hypertensive rats. J Nutr. 2009;139(1):96–100.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Yamabe N, Kang KS, Hur JM, et al. Matcha, a powdered green tea, ameliorates the progression of renal and hepatic damage in type 2 diabetic OLETF rats. J Med Food. 2009;12(4):714–21.

    Article  CAS  PubMed  Google Scholar 

  96. Babu PV, Sabitha KE, Shyamaladevi CS. Therapeutic effect of green tea extract on oxidative stress in aorta and heart of streptozotocin diabetic rats. Chem Biol Interact. 2006;162(2):114–20.

    Article  CAS  PubMed  Google Scholar 

  97. Mustata GT, Rosca M, Biemel KM, et al. Paradoxical effects of green tea (Camellia sinensis) and antioxidant vitamins in diabetic rats: improved retinopathy and renal mitochondrial defects but deterioration of collagen matrix glycoxidation and cross-linking. Diabetes. 2005;54(2):517–26.

    Article  CAS  PubMed  Google Scholar 

  98. Renno WM, Abdeen S, Alkhalaf M, Asfar S. Effect of green tea on kidney tubules of diabetic rats. Br J Nutr. 2008;100(3):652–9.

    Article  CAS  PubMed  Google Scholar 

  99. Marfo EK, Wallace P, Timpo G, et al. Cholesterol lowering effect of jackbean (Canavalia ensiformis) seed protein. Pharmacology. 1990;21(5):753–7.

    CAS  Google Scholar 

  100. Enyikwola O, Addy EO, Adoga GI. Hypoglycaemic effect of Canavalia ensiformis (Leguminosae) in albino rats. Discov Innov. 1991;3(3):61–3.

    Google Scholar 

  101. Asolkar LV, Kakkar KK, Chatre OJ. Glossary of Indian medicinal plants with active principles (Part I) A-K series. New Delhi: Publication and Information Directorate, CSIR; 1992. p. 176.

    Google Scholar 

  102. Yoganarasimhan SN. Medical plants of India. 2nd ed. Bangalor: International Book Publishers, Print Cyber Media; 2000. p. 109–10.

    Google Scholar 

  103. Chandramohan G, Al-Numair KS, Pugalendi KV. Effect of 3-hydroxymethyl xylitol on hepatic and renal functional markers and protein levels in streptozotocin-diabetic rats. Afr J Biochem Res. 2009;3(5):198–204.

    CAS  Google Scholar 

  104. Babu V, Gangadevi T, Subramoniam A. Anti-hyperglycaemic activity of cassia Kleinii leaf extract in glucose fed normal rats and alloxan-induced diabetic rats. Indian J Pharmacol. 2002;34(6):409–15.

    Google Scholar 

  105. Abu-Zeyad R, Khan AG, Khoo C. Occurrence of arbuscular mycorrhiza in Castanospermum australe A. Cunn. & C. Fraser and effects on growth and production of castanospermine. Mycorrhiza. 1999;9:111–7.

    CAS  Google Scholar 

  106. Zhang WY, Li Wan Po A. The effectiveness of topically applied capsaicin. A meta-analysis. Eur J Clin Pharmacol. 1994;46(6):517–22.

    Article  CAS  PubMed  Google Scholar 

  107. Forst T, Pohlmann T, Kunt T, et al. The influence of local capsaicin treatment on small nerve fibre function and neurovascular control in symptomatic diabetic neuropathy. Acta Diabetol. 2002;39(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  108. Capsaicin Study Group. Effect of treatment with capsaicin on daily activities of patients with painful diabetic neuropathy. Diabetes Care. 1992;15(2):159–65.

    Article  Google Scholar 

  109. Biesbroeck R, Bril V, Hollander P, et al. A double-blind comparison of topical capsaicin and oral amitriptyline in painful diabetic neuropathy. Adv Ther. 1995;12(2):111–20.

    CAS  PubMed  Google Scholar 

  110. Capsaicin Study Group. Treatment of painful diabetic neuropathy with topical capsaicin. A multicenter, double-blind, vehicle-controlled study. Arch Intern Med. 1991;151(11):2225–9.

    Article  Google Scholar 

  111. Don G. In: Ross IA, editor. Medicinal plants of the world. Totowa: Humana Press; 1999. p. 109–18.

    Google Scholar 

  112. Abd El-Ghany MA, Nagib RM, Mamdouh SM. Anti-diabetic effect of some herbs and fruit against Streptozotocin induced diabetic rats. Global Veterinaria. 2014;12(4):541–9.

    Google Scholar 

  113. González-Molina E, Moreno DA, García-Viguera C. Genotype and harvest time influence the phytochemical quality of Fino lemon juice (Citrus limon (L.) Burm. F.) for industrial use. J Agric Food Chem. 2008;56(5):1669–75.

    Article  CAS  PubMed  Google Scholar 

  114. Khan A, Safdar M, Ali Khan MM. Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes Care. 2003;26(12):3215–8.

    Article  PubMed  Google Scholar 

  115. Kim SH, Hyun SH, Choung SY. Antioxidative effects of Cinnamomi cassiae and Rhodiola rosea extracts in liver of diabetic mice. Biofactors. 2006;26(3):209–19.

    Article  PubMed  Google Scholar 

  116. Mishra A, Bhatti R, Singh A, et al. Ameliorative effect of the cinnamon oil from Cinnamomum zeylanicum upon early stage diabetic nephropathy. Planta Med. 2010;76(5):412–7.

    Article  CAS  PubMed  Google Scholar 

  117. Jalili J, Askeroglu U, Alleyne B, et al. Herbal products that may contribute to hypertension. Plast Reconstr Surg. 2013;131(1):168–73.

    Article  CAS  PubMed  Google Scholar 

  118. Rasmussen C, Glisson J. Dietary supplements and hypertension: potential benefits and precautions. J Clin Hypertens. 2012;14(7):467–71.

    Article  CAS  Google Scholar 

  119. Cerda JJ, Robbins FL, Burgin CW, Baumgartner TG, et al. The effects of grapefruit pectin on patients at risk for coronary heart disease without altering diet or lifestyle. Clin Cardiol. 1988;11(9):589–94.

    Article  CAS  PubMed  Google Scholar 

  120. Bailey DG, Dresser GK. Interactions between grapefruit juice and cardiovascular drugs. Am J Cardiovasc Drugs. 2004;4(5):281–97.

    Article  CAS  PubMed  Google Scholar 

  121. Prasannakumar G, Sudeesh S, Vijayalakshmi NR, et al. Hypoglycemic effect of Coccinia indica: Mechanism of action. Planta Med. 1993;59:330–2.

    Article  Google Scholar 

  122. Grindley PB, Omoruyi FO, Asemota HN, et al. Effect of yam (Dioscorea cayenensis) and dasheen (Colocassia esculenta) extracts on the kidney of streptozotocin-induced diabetic rats. Int J Food Sci Nutr. 2001;52(5):429–33.

    Article  CAS  PubMed  Google Scholar 

  123. Badole S, Patel N, Bodhankar S, et al. Antihyperglycemic activity of aqueous extract of leaves of Cocculus hirsutus (L.) Diels in alloxan-induced diabetic mice. Indian J Pharmacol. 2006;38(1):49–53.

    Article  Google Scholar 

  124. Punitha ISR, Rajendran K, Shirwaikar A, et al. Alcoholic stem extract of Coscinium fenestratum regulates carbohydrate metabolism and improves antioxidant status in streptozotocin–nicotinamide induced diabetic rats. Evid Based Complement Alternat Med. 2005;2(3):375–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  125. Ruel G, Pomerleau S, Couture P, et al. Favourable impact of low-calorie cranberry juice consumption on plasma HDL-cholesterol concentrations in men. Br J Nutr. 2006;96(2):357–64.

    Article  CAS  PubMed  Google Scholar 

  126. Rafieian-Kopaei M, Asgary S, Adelnia A, et al. The effects of Cornelian cherry on atherosclerosis and atherogenic factors in hypercholesterolemic rabbits. J Med Plants Res. 2011;5(13):2670–6.

    CAS  Google Scholar 

  127. Wang J, Xiong X, Feng B. Effect of Crataegus usage in cardiovascular disease prevention: an evidence-based approach. Evid Based Complement Alternat Med. 2013;14:93–9.

    Google Scholar 

  128. Priya S. Phytochemical screening and trace element analysis of Cryptomeria japonica. RRJBT. 2014;4:17–20.

    Google Scholar 

  129. Abdalbasit M, Bertrand M, Bertrand M. Fatty acids, tocopherols,sterols, phenolic profiles and oxidative stability of Cucumis melo var. Agrestis oil. J Food Lipids. 2008;15:56–67.

    Article  Google Scholar 

  130. Fleshman M, Lester G, Riedl K, et al. Carotene and novel apocarotenoid concentrations in orange-fleshed cucumis melo melons: determinations of β-carotene bioaccessibility and bioavailability. J Agric Food Chem. 2011;59(9):4448–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  131. Abuelgassim O, Showayman AL. The effect of pumpkin (Cucurbita Pepo L) seeds and L-arginine supplementation on serum lipid concentrations in atherogenic rats. Afr J Tradit Complement Altern Med. 2012;9(1):131–7.

    CAS  PubMed  Google Scholar 

  132. Valentão P, Fernandes E, Carvalho F. Antioxidative properties of cardoon (Cynara cardunculus L.) infusion against superoxide radical, hydroxyl radical, and hypochlorous acid. J Agric Food Chem. 2002;50:4989–99.

    Article  CAS  PubMed  Google Scholar 

  133. Suryanarayana P, Satyanarayana A, Balakrishna N, et al. Effect of turmeric and curcumin on oxidative stress and antioxidant enzymes in streptozotocin-induced diabetic rat. Med Sci Monit. 2007;13(12):BR286–92.

    CAS  PubMed  Google Scholar 

  134. Mrudula T, Suryanarayana P, Srinivas PN, et al. Effect of curcumin on hyperglycemia-induced vascular endothelial growth factor expression in streptozotocin-induced diabetic rat retina. Bio-Chem Biophys Res Commun. 2007;361(2):528–32.

    Article  CAS  Google Scholar 

  135. Surles R, Weng N, Simon PW. Carotenoid profiles and consumer sensory evaluation of specialty carrots (Daucus carota, L.) of various colors. J Agric Food Chem. 2004;52:3417–21.

    Article  CAS  PubMed  Google Scholar 

  136. Tavili A, Pouzesh H, Farajolahi A. The effect of different treatments on improving seed germination characteristics in medicinal species of Descurainia sophia and Plantago ovata. Afr J Biotechnol. 2010;9(39):6588–93.

    CAS  Google Scholar 

  137. Englian C, Shilling W, Honghua X. Analysis of the volatile oil from Desmodium styracifolium (Osbeck) Merr. by gas chromatography–mass spectrometry. Guangzhou University of Chinese Medicine. 2005;22:302–3.

    Google Scholar 

  138. Iwu MM, Okunji CO, Akah P, et al. Hypoglycaemic activity of dioscoretine from tubers of Dioscorea dumetorum in normal and alloxan diabetic rabbits. Planta Med. 1990;56(3):264–7.

    Article  CAS  PubMed  Google Scholar 

  139. Rachel NU. Control of hyperlipidaemia, hypercholesterolaemia and hyperketonaemia by aqueous extract of Dioscorea dumetorum tuber. Trop J Pharm Res. 2003;2(1):183–7.

    Google Scholar 

  140. Geetha BS, Mathew BC, Augusti K. Hypoglycemic effects of leucodelphinidin derivative isolated from Ficus bengalensis (Linn). Indian J Physiol Pharmacol. 1994;38(3):220–2.

    CAS  PubMed  Google Scholar 

  141. Ghosh R, Sharachandra KH, Rita S, et al. Hypoglycemic activity of Ficus hispida (bark) in normal and diabetic albino rats. Indian J Pharmacol. 2004;36:222–5.

    Google Scholar 

  142. Kesavulu MM, Kameswararao B, Apparao C, et al. Effect of omega-3 fatty acids on lipid peroxidation and antioxidant enzyme status in type 2 diabetic patients. Diabetes Metab. 2002;28(1):20–6.

    CAS  PubMed  Google Scholar 

  143. Chiu WC, Hou YC, Yeh CL, et al. Effect of dietary fish oil supplementation on cellular adhesion molecule expression and tissue myeloperoxidase activity in diabetic mice with sepsis. Br J Nutr. 2007;97(4):685–91.

    Article  CAS  PubMed  Google Scholar 

  144. Rizza S, Tesauro M, Cardillo C, et al. Fish oil supplementation improves endothelial function in normoglycemic offspring of patients with type 2 diabetes. Atherosclerosis. 2009;206(2):569–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  145. He CY, Li WD, Guo SX, et al. Effect of polysaccharides from Ganoderma lucidum on streptozotocin-induced diabetic nephropathy in mice. J Asian Nat Prod Res. 2006;8(8):705–11.

    Article  CAS  PubMed  Google Scholar 

  146. Meng WL, Wang RJ, Yu J. Clinical observation on treatment of diabetic peripheral neuphropathy by ginkgo leaf extract combined with active vitamin B12. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2004;24(7):645–6.

    PubMed  Google Scholar 

  147. Zhu HW, Shi ZF, Chen YY. Effect of extract of ginkgo bilboa leaf on early diabetic nephropathy. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2005;25(10):889–91.

    CAS  PubMed  Google Scholar 

  148. Li XS, Zheng WY, Lou SX, et al. Effect of Ginkgo leaf extract on vascular endothelial function in patients with early stage diabetic nephropathy. Chin J Integr Med. 2009;15(1):26–9.

    Article  PubMed  Google Scholar 

  149. Lu Q, Yin XX, Wang JY, et al. Effects of Ginkgo biloba on prevention of development of experimental diabetic nephropathy in rats. Acta Pharmacol Sin. 2007;28(6):818–28.

    Article  CAS  PubMed  Google Scholar 

  150. Ramkumar KM, Latha M, Venkateswaran S, et al. Modulatory effect of Gymnema montanum leaf extract on brain antioxidant status and lipid peroxidation in diabetic rats. J Med Food. 2004;7(3):366–71.

    Article  PubMed  Google Scholar 

  151. Azadbakht L, Atabak S, Esmaillzadeh A. Soy protein intake, cardiorenal indices, and C-reactive protein in type 2 diabetes with nephropathy: a longitudinal randomized clinical trial. Diabetes Care. 2008;31(4):648–54.

    Article  CAS  PubMed  Google Scholar 

  152. Van Wyk BE, Van O, Gericke N. Medical plants of South Africa. 1st ed. Pretoria: Briza Publications; 1997. p. 156.

    Google Scholar 

  153. S'Bahle MX, John AO. Hypoglycaemic effects of Hypoxis hemerocallidea (Fisch and C.A. Mey.) corm ‘African potato’ methanolic extract in rats. Med J Islam Acad Sci. 2000;13(2):75–8.

    Google Scholar 

  154. McKay DL, Chen CY, Yeum KJ, et al. Chronic and acute effects of walnuts on antioxidant capacity and nutritional status in humans: a randomized, cross-over pilot study. Nutr J. 2010;9(1):21.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  155. Pan A, Demark-Wahnefried W, Ye X, et al. Effects of a flaxseedderived lignan supplement on C-reactive protein, IL-6 and retinolbinding protein 4 in type 2 diabetic patients. Br J Nutr. 2009;101(8):1145–9.

    Article  CAS  PubMed  Google Scholar 

  156. Haliga R, Mocanu V, Paduraru I, et al. Effects of dietary flaxseed supplementation on renal oxidative stress in experimental diabetes. Rev Med Chir Soc Med Nat Iasi. 2009;113(4):1200–4.

    PubMed  Google Scholar 

  157. Li XM. Protective effect of Lycium barbarum polysaccharides on streptozotocin-induced oxidative stress in rats. Int J Biol Macromol. 2007;40(5):461–5.

    Article  CAS  PubMed  Google Scholar 

  158. Teoh SL, Latiff AA, Das S. The effect of topical extract of Momordica charantia (bitter gourd) on wound healing in nondiabetic rats and in rats with diabetes induced by streptozotocin. Clin Exp Dermatol. 2009;34(7):815–2.

    Article  CAS  PubMed  Google Scholar 

  159. Chandra A, Mahdi AA, Singh RK, et al. Effect of Indian herbal hypoglycemic agents on antioxidant capacity and trace elements content in diabetic rats. J Med Food. 2008;11(3):506–12.

    Article  CAS  PubMed  Google Scholar 

  160. Narayan K, KNV S. The hypoglycemic effect of Murra koengii on normal and diabetic dog. Mysore J Agric Sci. 1975;9:132.

    Google Scholar 

  161. Ford I, Cotter MA, Cameron NE, et al. The effects of treatment with alpha-lipoic acid or evening primrose oil on vascular hemostatic and lipid risk factors, blood flow, and peripheral nerve conduction in the streptozotocin-diabetic rat. Metab Clin Exp. 2001;50(8):868–75.

    Article  CAS  PubMed  Google Scholar 

  162. Hamden K, Allouche N, Damak M, et al. Hypoglycemic and antioxidant effects of phenolic extracts and purified hydroxytyrosol from olive mill waste in vitro and in rats. Chem Biol Interact. 2009;180(3):421–32.

    Article  CAS  PubMed  Google Scholar 

  163. Medeiros FJ, Aguila MB, Mandarim-de-Lacerda CA. Renal cortex remodeling in streptozotocin-induced diabetic spontaneously hypertensive rats treated with olive oil, palm oil and fish oil from Menhaden. Prostaglandins Leukot Essent Fatty Acids. 2006;75(6):357–65.

    Article  CAS  PubMed  Google Scholar 

  164. Zhao GH, Shen YS, Ma JB, et al. Protection of polysaccharides-2b from mudan cortex of Paeonia suffruticosa on diabetic cataract in rats. Zhongguo Zhong Yao Za Zhi. 2007;3(19):2036–9.

    Google Scholar 

  165. John LS, John TA, Lawrence AL, et al. Antidiabetic plants. J Am Coll Nutr. 2003;22:524.

    Article  Google Scholar 

  166. Zhao L, Lan LG, Min XL, et al. Integrated treatment of traditional Chinese medicine and western medicine for early- and intermediate-stage diabetic nephropathy. Nan Fang Yi Ke Da Xue Xue Bao. 2007;27(7):1052–5.

    PubMed  Google Scholar 

  167. Ryu JK, Lee T, Kim DJ, et al. Free radical-scavenging activity of Korean red ginseng for erectile dysfunction in noninsulin- dependent diabetes mellitus rats. Urology. 2005;65(3):611–5.

    Article  PubMed  Google Scholar 

  168. Cesarone MR, Belcaro G, Rohdewald P, et al. Improvement of diabetic microangiopathy with pycnogenol: a prospective, controlled study. Angiology. 2006;57(4):431–6.

    Article  CAS  PubMed  Google Scholar 

  169. Belcaro G, Cesarone MR, Errichi BM, et al. Diabetic ulcers: microcirculatory improvement and faster healing with pycnogenol. Clin Appl Thromb Hemost. 2006;12(3):318–23.

    Article  CAS  PubMed  Google Scholar 

  170. Dong W, Shi HB, Ma H, et al. Homoisoflavanones from Polygonatum odoratum rhizomes inhibit advanced glycation end product formation. Arch Pharm Res. 2010;33(5):669–74.

    Article  CAS  PubMed  Google Scholar 

  171. McLennan SV, Bonner J, Milne S, et al. The anti-inflammatory agent Propolis improves wound healing in a rodent model of experimental diabetes. Wound Repair Regen. 2008;16(5):706–13.

    Article  PubMed  Google Scholar 

  172. Lotfy M, Badra G, Burham W, et al. Combined use of honey, bee propolis and myrrh in healing a deep, infected wound in a patient with diabetes mellitus. Br J Biomed Sci. 2006;63(4):171–3.

    Article  CAS  PubMed  Google Scholar 

  173. Bebrevska L, Foubert K, Hermans N, et al. In vivo antioxidative activity of a quantified Pueraria lobata root extract. J Ethnopharmacol. 2010;127(1):112–7.

    Article  PubMed  Google Scholar 

  174. Rosenblat M, Hayek T, Aviram M. Anti-oxidative effects of pomegranate juice (PJ) consumption by diabetic patients on serum and on macrophages. Atherosclerosis. 2006;187(2):363–71.

    Article  CAS  PubMed  Google Scholar 

  175. Fenercioglu AK, Saler T, Genc E, Sabuncu H, Altuntas Y. The effects of polyphenol-containing antioxidants on oxidative stress and lipid peroxidation in type 2 diabetes mellitus without complications. J Endocrinol Invest. 2010;33(2):118–24.

    Article  CAS  PubMed  Google Scholar 

  176. Lau TW, Lam FF, Lau KM, et al. Pharmacological investigation on the wound healing effects of Radix Rehmanniae in an animal model of diabetic foot ulcer. J Ethnopharmacol. 2009;123(1):155–62.

    Article  CAS  PubMed  Google Scholar 

  177. Waisundara VY, Huang M, Hsu A, et al. Characterization of the anti-diabetic and antioxidant effects of rehmannia glutinosa in streptozotocin-induced diabetic Wistar rats. Am J Chin Med. 2008;36(6):1083–4.

    Article  CAS  PubMed  Google Scholar 

  178. Takako Y, Li-Qun H, Yasuko M, et al. Effects of rhubarb extract in rats with diabetic nephropathy. Phytother Res. 2097;11(1):73–5.

    Google Scholar 

  179. Vuksan V, Whitham D, Sievenpiper JL, et al. Supplementation of conventional therapy with the novel grain Salba (Salvia hispanica L.) improves major and emerging cardiovascular risk factors in type 2 diabetes: results of a randomized controlled trial. Diabetes Care. 2007;30(11):2804–10.

    Article  CAS  PubMed  Google Scholar 

  180. Yue KK, Lee KW, Chan KK, et al. Danshen prevents the occurrence of oxidative stress in the eye andaorta of diabetic rats without affecting the hyperglycemic state. J Ethnopharmacol. 2006;106(1):136–41.

    Article  PubMed  Google Scholar 

  181. Liu G, Guan GJ, Qi TG, et al. Protective effects of Salvia miltiorrhiza on rats with streptozotocin diabetes and its mechanism. Zhong Xi Yi Jie He Xue Bao. 2005;3(6):459–62.

    Article  PubMed  Google Scholar 

  182. Wu HN, Sun H. Study on clinical therapeutic effect of composite Salvia injection matched with Western medicine in treating diabetic foot. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2003;23(10):727–9.

    PubMed  Google Scholar 

  183. Vessal G, Akmali M, Najafi P, et al. Silymarin and milk thistle extract may prevent the progression of diabetic nephropathy in streptozotocin-induced diabetic rats. Ren Fail. 2010;32(6):733–9.

    Article  CAS  PubMed  Google Scholar 

  184. Rahman AU, Zaman K. Medicinal plants with hypoglycemic activity. J Ethnopharmacal. 1989;26:1–55.

    Article  Google Scholar 

  185. Teixeira CC, Fuchs FD, Weinert LS, et al. The efficacy of folk medicines in the management of type 2 diabetes mellitus: results of a randomized controlled trial of Syzygium cumini (L.) Skeels. J Clin Pharmacol Ther. 2006;31(1):1–5.

    Article  CAS  Google Scholar 

  186. Nalamolu KR, Nammi S. Antidiabetic and renoprotective effects of the chloroform extract of Terminalia chebula Retz. seeds in streptozotocin-induced diabetic rats. BMC Complement Altern Med. 2006;7(6):17.

    Google Scholar 

  187. Nagappa AN, Thakurdesai PA, Venkat Rao N, et al. Antidiabetic activity of Terminalia catappa Linn fruits. J Ethnopharmacol. 2003;88(1):45–50.

    Article  CAS  PubMed  Google Scholar 

  188. Purandare H, Supe A. Immunomodulatory role of Tinospora cordifolia as an adjuvant in surgical treatment of diabetic foot ulcers: a prospective randomized controlled study. Indian J Med Sci. 2007;61(6):347–55.

    Article  PubMed  Google Scholar 

  189. Bordia A, Verma SK, Srivastava KC. Effect of ginger (Zingiber officinale Rosc.) and fenugreek (Trigonella foenumgraecum L.) on blood lipids, blood sugar and platelet aggregation in patients with coronary artery disease. Prostaglandins Leukot Essent Fatty Acids. 1997;56(5):379–84.

    Article  CAS  PubMed  Google Scholar 

  190. Kaviarasan S, Viswanathan P, Anuradha CV. Fenugreek seed (Trigonella foenum graecum) polyphenols inhibit ethanol-induced collagen and lipid accumulation in rat liver. Cell Biol Toxicol. 2007;23(6):373–83.

    Article  CAS  PubMed  Google Scholar 

  191. Matsunaga N, Imai S, Inokuchi Y, et al. Bilberry and its main constituents have neuroprotective effects against retinal neuronal damage in vitro and in vivo. Mol Nutr Food Res. 2009;53(7):869–77.

    Article  CAS  PubMed  Google Scholar 

  192. Liu YN, Shen XN, Yao GY. Effects of grape seed proanthocyanidins extracts on experimental diabetic nephropathy in rats. Wei Sheng Yan Jiu. 2006;35(6):703–5.

    PubMed  Google Scholar 

  193. Udayakumar R, Kasthurirengan S, Vasudevan A, et al. Antioxidant effect of dietary supplement Withania somnifera L. reduce blood glucose levels in alloxan-induced diabetic rats. Plant Foods Hum Nutr. 2010;65(2):91–8.

    Article  CAS  PubMed  Google Scholar 

  194. Parihar MS, Chaudhary M, Shetty R, et al. Susceptibility of hippocampus and cerebral cortex to oxidative damage in streptozotocin treated mice: prevention by extracts of Withania somnifera and Aloe vera. J Clin Neurosci. 2004;11(4):397–402.

    Article  CAS  PubMed  Google Scholar 

  195. Rafieian-Kopaei M, Nasri H. The ameliorative effect of Zingiber officinale in diabetic nephropathy. Iran Red Crescent Med J. 2014;16(5):145–53.

    Article  Google Scholar 

  196. Sokeng SD, Rokeya B, Mostafa M, et al. Antihyperglycemic effect of Bridelia ndellensis ethanol extract and fractions in streptozotocin-induced diabetic rats. Afr J Tradit Complement Altern Med. 2005;2(2):94–102.202.

    Google Scholar 

  197. Nimenibo-Uadia R. Effect of aqueous extract of Canavalia ensiformis seeds on hyperlipidaemia and hyperketonaemia in alloxan-induced diabetic rats. Biokemistri. 2003;15(1):7–15.

    Google Scholar 

  198. Singh SN, Vats P, Suri S, et al. Effect of an antidiabetic extract of Catharanthus roseus on enzymic activities in streptozotocin induced diabetic rats. J Ethnopharmacol. 2001;76(3):269–77.

    Article  CAS  PubMed  Google Scholar 

  199. Dhanabal SP, Koata CK, Ramnathan M, et al. The hypoglycemic activity of Coccinia indica Wight & Arn and its influence on certain biochemical parameters. Indian J Pharmacol. 2004;36(4):249–50.

    Google Scholar 

  200. Kesari AN, Gupta RK, Watal G. Hypoglycemic effects of Murraya koenigii on normal and alloxan-diabetic rabbits. J Ethnopharmacol. 2005;97(2):247–51.

    Article  PubMed  Google Scholar 

  201. Ha H, Kim KH. Pathogenesis of diabetic nephropathy: the role of oxidative stress and protein kinase C. Diabetes Res Clin Pract. 1999;45(2):147–51.

    Article  CAS  PubMed  Google Scholar 

  202. Park KS, Kim JH, Kim MS, et al. Effects of insulin and antioxidant on plasma 8-hydroxyguanine and tissue 8-hydroxydeoxyguanosine in streptozotocin-induced diabetic rats. Diabetes. 2001;50(12):2837–41.

    Article  CAS  PubMed  Google Scholar 

  203. Vincent AM, Russell JW, Low P, et al. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr Rev. 2004;25(4):612–28.111.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Rafieian-Kopaei.

Ethics declarations

Conflict of Interest

Zeinab Nazarian-Samani, Robert D. E. Sewell, Zahra Lorigooini, and Mahmoud Mahmoud Rafieian-Kopaei declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Pharmacologic Treatment of Type 2 Diabetes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarian-Samani, Z., Sewell, R.D.E., Lorigooini, Z. et al. Medicinal Plants with Multiple Effects on Diabetes Mellitus and Its Complications: a Systematic Review. Curr Diab Rep 18, 72 (2018). https://doi.org/10.1007/s11892-018-1042-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-018-1042-0

Keywords

Navigation