Skip to main content

Boosting GLP-1 by Natural Products

  • Chapter
  • First Online:
Natural Products and Human Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 1328))

Abstract

The prevalence of diabetes mellitus is growing rapidly. Diabetes is the underlying cause of many metabolic and tissue dysfunctions, and, therefore, many therapeutic agents have been developed to regulate the glycemic profile. Glucagon-like peptide-1 (GLP-1) receptor agonists are a newly developed class of antidiabetic drugs that have potent hypoglycemic effects via several molecular pathways. In addition to synthetic GLP-1 receptor agonists, some evidence suggests that natural products may have modulatory effects on GLP-1 expression and secretion. In the current study, we conclude that certain herbal-based constituents, such as berberine, tea, curcumin, cinnamon, wheat, soybean, resveratrol, and gardenia, can exert an influence on GLP-1 release.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mayer-Davis, E. J., Lawrence, J. M., Dabelea, D., Divers, J., Isom, S., Dolan, L., et al. (2017). Incidence trends of type 1 and type 2 diabetes among youths, 2002–2012. New England Journal of Medicine, 376(15), 1419–1429.

    Article  PubMed  Google Scholar 

  2. Yaribeygi, H., Katsiki, N., Behnam, B., Iranpanah, H., & Sahebkar, A. (2018). MicroRNAs and type 2 diabetes mellitus: Molecular mechanisms and the effect of antidiabetic drug treatment. Metabolism, 87, 48–55.

    Article  CAS  PubMed  Google Scholar 

  3. Yaribeygi, H., Atkin, S. L., & Sahebkar, A. (2018). A review of the molecular mechanisms of hyperglycemia-induced free radical generation leading to oxidative stress. Journal of Cellular Physiology, 234(2), 1300–1312.

    Article  PubMed  Google Scholar 

  4. Yaribeygi, H., Atkin, S. L., Ramezani, M., & Sahebkar, A. (2018). A review of the molecular pathways mediating the improvement in diabetes mellitus following caloric restriction. Journal of Cellular Physiology, 87, 48–55.

    CAS  Google Scholar 

  5. Yaribeygi, H., Atkin, S. L., Katsiki, N., & Sahebkar, A. (2018). Narrative review of the effects of antidiabetic drugs on albuminuria. Journal of Cellular Physiology, 234(5), 5786–5797.

    Article  PubMed  Google Scholar 

  6. Yaribeygi, H., Atkin, S. L., Butler, A. E., & Sahebkar, A. (2018). Sodium–glucose cotransporter inhibitors and oxidative stress: An update. Journal of Cellular Physiology, 234(4), 3231–3237.

    Article  PubMed  Google Scholar 

  7. Yaribeygi, H., Mohammadi, M. T., Butler, A. E., & Sahebkar, A. (2018). PPAR-α agonist fenofibrate potentiates antioxidative elements and improves oxidative stress of hepatic cells in streptozotocin-induced diabetic animals. Comparative Clinical Pathology, 28, 1–7.

    Google Scholar 

  8. Shelton, A. P. T., Nørregaard, P., Fog, J. U., & Knudsen, C. B.. (2018). GIP-GLP-1 dual agonist compounds and methods. Google Patents.

    Google Scholar 

  9. Investigators, F.-S. T. (2016). Glucose variability in a 26-week randomized comparison of mealtime treatment with rapid-acting insulin versus GLP-1 agonist in participants with type 2 diabetes at high cardiovascular risk. Diabetes Care, 39, 152782.

    Google Scholar 

  10. Deacon, C. F., Mannucci, E., & Ahrén, B. (2012). Glycaemic efficacy of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors as add-on therapy to metformin in subjects with type 2 diabetes—A review and meta analysis. Diabetes, Obesity and Metabolism, 14(8), 762–767.

    Article  CAS  PubMed  Google Scholar 

  11. Prasad-Reddy, L., & Isaacs, D. (2015). A clinical review of GLP-1 receptor agonists: Efficacy and safety in diabetes and beyond. Drugs in Context, 4, 212283.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bhat, G. A., Khan, H. A., Alhomida, A. S., Sharma, P., Singh, R., & Paray, B. A. (2018). GLP-I secretion in healthy and diabetic Wistar rats in response to aqueous extract of Momordica charantia. BMC Complementary and Alternative Medicine, 18(1), 162.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dao, T.-M. A., Waget, A., Klopp, P., Serino, M., Vachoux, C., Pechere, L., et al. (2011). Resveratrol increases glucose induced GLP-1 secretion in mice: A mechanism which contributes to the glycemic control. PLoS One, 6(6), e20700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Montelius, C., Erlandsson, D., Vitija, E., Stenblom, E.-L., Egecioglu, E., & Erlanson-Albertsson, C. (2014). Body weight loss, reduced urge for palatable food and increased release of GLP-1 through daily supplementation with green-plant membranes for three months in overweight women. Appetite, 81, 295–304.

    Article  PubMed  Google Scholar 

  15. Association AD. (2014). Diagnosis and classification of diabetes mellitus. Diabetes Care, 37(Supplement 1), S81–S90.

    Article  Google Scholar 

  16. de Faria Maraschin, J. (2013). Classification of diabetes. In Diabetes (pp. 12–19). New York: Springer.

    Chapter  Google Scholar 

  17. O’Neal, K. S., Johnson, J. L., & Panak, R. L. (2016). Recognizing and appropriately treating latent autoimmune diabetes in adults. Diabetes Spectrum, 29(4), 249–252.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Drucker, D. J., & Nauck, M. A. (2006). The incretin system: Glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. The Lancet, 368(9548), 1696–1705.

    Article  CAS  Google Scholar 

  19. Islam, M. (2016). Insulinotropic effect of herbal drugs for management of diabetes mellitus: A congregational approach. Biosensors Journal, 5(142), 2.

    Google Scholar 

  20. Meier, J. J. (2012). GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nature Reviews Endocrinology, 8(12), 728.

    Article  CAS  PubMed  Google Scholar 

  21. Baggio, L. L., & Drucker, D. J. (2007). Biology of incretins: GLP-1 and GIP. Gastroenterology, 132(6), 2131–2157.

    Article  CAS  PubMed  Google Scholar 

  22. Scott, K. A., & Moran, T. H. (2007). The GLP-1 agonist exendin-4 reduces food intake in nonhuman primates through changes in meal size. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 293(3), R983–R987.

    Article  CAS  PubMed  Google Scholar 

  23. Ding, X., Saxena, N. K., Lin, S., Gupta, N., & Anania, F. A. (2006). Exendin-4, a glucagon-like protein-1 (GLP-1) receptor agonist, reverses hepatic steatosis in ob/ob mice. Hepatology, 43(1), 173–181.

    Article  CAS  PubMed  Google Scholar 

  24. Wootten, D., Simms, J., Koole, C., Woodman, O. L., Summers, R. J., Christopoulos, A., et al. (2011). Modulation of the glucagon-like peptide-1 receptor signaling by naturally occurring and synthetic flavonoids. Journal of Pharmacology and Experimental Therapeutics, 336(2), 540–550.

    Article  CAS  PubMed  Google Scholar 

  25. Rosenstock, J., Reusch, J., Bush, M., Yang, F., Stewart, M., & Group AS. (2009). Potential of albiglutide, a long-acting GLP-1 receptor agonist, in type 2 diabetes: A randomized controlled trial exploring weekly, biweekly, and monthly dosing. Diabetes Care, 32(10), 1880–1886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nauck, M. (2016). Incretin therapies: Highlighting common features and differences in the modes of action of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Diabetes, Obesity and Metabolism, 18(3), 203–216.

    Article  CAS  PubMed  Google Scholar 

  27. Li, L., Shen, J., Bala, M. M., Busse, J. W., Ebrahim, S., Vandvik, P. O., et al. (2014). Incretin treatment and risk of pancreatitis in patients with type 2 diabetes mellitus: Systematic review and meta-analysis of randomised and non-randomised studies. BMJ, 348, g2366.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Singh, R., Bhat, G. A., & Sharma, P. (2015). GLP-1 secretagogues potential of medicinal plants in management of diabetes. Journal of Pharmacognosy and Phytochemistry, 4(1).

    Google Scholar 

  29. Cicero, A. F., & Tartagni, E. (2012). Antidiabetic properties of berberine: From cellular pharmacology to clinical effects. Hospital Practice, 40(2), 56–63.

    Article  PubMed  Google Scholar 

  30. Lu, S.-S., Yu, Y.-L., Zhu, H.-J., Liu, X.-D., Liu, L., Liu, Y.-W., et al. (2009). Berberine promotes glucagon-like peptide-1 (7–36) amide secretion in streptozotocin-induced diabetic rats. Journal of Endocrinology, 200(2), 159–165.

    Article  CAS  PubMed  Google Scholar 

  31. Yu, Y., Liu, L., Wang, X., Liu, X., Liu, X., Xie, L., et al. (2010). Modulation of glucagon-like peptide-1 release by berberine: In vivo and in vitro studies. Biochemical Pharmacology, 79(7), 1000–1006.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, Q., Xiao, X., Li, M., Li, W., Yu, M., Zhang, H., et al. (2014). Berberine moderates glucose metabolism through the GnRH-GLP-1 and MAPK pathways in the intestine. BMC Complementary and Alternative Medicine, 14(1), 188.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yu, Y., Hao, G., Zhang, Q., Hua, W., Wang, M., Zhou, W., et al. (2015). Berberine induces GLP-1 secretion through activation of bitter taste receptor pathways. Biochemical Pharmacology, 97(2), 173–177.

    Article  CAS  PubMed  Google Scholar 

  34. Ye, J., Le, J., & Sun, Y. (2018). Berberine improves mitochondrial function in colon epithelial cells to protect L-cells from necrosis in preservation of GLP-1 secretion. American Diabetes Association. https://doi.org/10.2337/db18-2451-PUB.

  35. Sun, Y., Jin, C., Zhang, X., Jia, W., Le, J., & Ye, J. (2018). Restoration of GLP-1 secretion by Berberine is associated with protection of colon enterocytes from mitochondrial overheating in diet-induced obese mice. Nutrition & Diabetes, 8(1), 53.

    Article  Google Scholar 

  36. Baur, J. A., & Sinclair, D. A. (2006). Therapeutic potential of resveratrol: The in vivo evidence. Nature Reviews Drug Discovery, 5(6), 493.

    Article  CAS  PubMed  Google Scholar 

  37. Brasnyó, P., Sümegi, B., Winkler, G., & Wittmann, I. (2014). Resveratrol and oxidative stress in diabetes mellitus. In Diabetes: Oxidative stress and dietary antioxidants (pp. 99–109). Saint Louis: Elsevier.

    Chapter  Google Scholar 

  38. Thazhath, S. S., Wu, T., Bound, M. J., Checklin, H. L., Standfield, S., Jones, K. L., et al. (2015). Administration of resveratrol for 5 wk has no effect on glucagon-like peptide 1 secretion, gastric emptying, or glycemic control in type 2 diabetes: A randomized controlled trial. The American Journal of Clinical Nutrition, 103(1), 66–70.

    Article  PubMed  Google Scholar 

  39. Brasnyó, P., Molnár, G. A., Mohás, M., Markó, L., Laczy, B., Cseh, J., et al. (2011). Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. British Journal of Nutrition, 106(3), 383–389.

    Article  PubMed  Google Scholar 

  40. Park, S., Ahn, I. S., Kim, J. H., Lee, M. R., Kim, J. S., & Kim, H. J. (2010). Glyceollins, one of the phytoalexins derived from soybeans under fungal stress, enhance insulin sensitivity and exert insulinotropic actions. Journal of Agricultural and Food Chemistry, 58(3), 1551–1557.

    Article  CAS  PubMed  Google Scholar 

  41. Mietlicki-Baase, E. G., Koch-Laskowski, K., McGrath, L. E., Krawczyk, J., Pham, T., Lhamo, R., et al. (2017). Daily supplementation of dietary protein improves the metabolic effects of GLP-1-based pharmacotherapy in lean and obese rats. Physiology & Behavior, 177, 122–128.

    Article  CAS  Google Scholar 

  42. Watanabe, K., Igarashi, M., Li, X., Nakatani, A., Miyamoto, J., Inaba, Y., et al. (2018). Dietary soybean protein ameliorates high-fat diet-induced obesity by modifying the gut microbiota-dependent biotransformation of bile acids. PLoS One, 13(8), e0202083.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Freeland, K., & Wilson, C. (2008). Increasing wheat fiber intake for 1 year increases colonic fermentation and glucagon-like peptide-1 (GLP-1) secretion in hyperinsulinemic humans. Canadian Journal of Diabetes, 32(4), 331.

    Article  Google Scholar 

  44. Freeland, K. R., Wilson, C., & Wolever, T. M. (2010). Adaptation of colonic fermentation and glucagon-like peptide-1 secretion with increased wheat fibre intake for 1 year in hyperinsulinaemic human subjects. British Journal of Nutrition, 103(1), 82–90.

    Article  CAS  PubMed  Google Scholar 

  45. Kato, M., Nakanishi, T., Tani, T., & Tsuda, T. (2017). Low-molecular fraction of wheat protein hydrolysate stimulates glucagon-like peptide-1 secretion in an enteroendocrine L cell line and improves glucose tolerance in rats. Nutrition Research, 37, 37–45.

    Article  CAS  PubMed  Google Scholar 

  46. Eelderink, C., Noort, M. W., Sozer, N., Koehorst, M., Holst, J. J., Deacon, C. F., et al. (2017). Difference in postprandial GLP-1 response despite similar glucose kinetics after consumption of wheat breads with different particle size in healthy men. European Journal of Nutrition, 56(3), 1063–1076.

    Article  CAS  PubMed  Google Scholar 

  47. Shin, J. S., & Huh, Y. S. (2014). Effect of intake of gardenia fruits and combined exercise of middle-aged obese women on hormones regulating energy metabolism. Journal of Exercise Nutrition & Biochemistry, 18(1), 41.

    Article  Google Scholar 

  48. Liu, J., Yin, F., Zheng, X., Jing, J., & Hu, Y. (2007). Geniposide, a novel agonist for GLP-1 receptor, prevents PC12 cells from oxidative damage via MAP kinase pathway. Neurochemistry International, 51(6–7), 361–369.

    Article  CAS  PubMed  Google Scholar 

  49. Yin, F., J-h, L., Zheng, X.-x., & Guo, L.-x. (2010). GLP-1 receptor plays a critical role in geniposide-induced expression of heme oxygenase-1 in PC12 cells. Acta Pharmacologica Sinica, 31(5), 540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu, J., Yin, F., Xiao, H., Guo, L., & Gao, X. (2012). Glucagon-like peptide 1 receptor plays an essential role in geniposide attenuating lipotoxicity-induced β-cell apoptosis. Toxicology In Vitro, 26(7), 1093–1097.

    Article  CAS  PubMed  Google Scholar 

  51. Hlebowicz, J., Hlebowicz, A., Lindstedt, S., Björgell, O., Höglund, P., Holst, J. J., et al. (2009). Effects of 1 and 3 g cinnamon on gastric emptying, satiety, and postprandial blood glucose, insulin, glucose-dependent insulinotropic polypeptide, glucagon-like peptide 1, and ghrelin concentrations in healthy subjects. The American Journal of Clinical Nutrition, 89(3), 815–821.

    Article  CAS  PubMed  Google Scholar 

  52. Plexopathy, D. (2009). Cinnamon dose-dependently reduces insulin concentration. The American Journal of Clinical Nutrition, 89, 815–821.

    Google Scholar 

  53. Vallianou, N. G., Evangelopoulos, A., Kollas, A., & Kazazis, C. (2014). Hypoglycemic and hypolipidemic effects of cinnamon. Current Topics in Nutraceuticals Research, 12(4), 127.

    Google Scholar 

  54. Planes-Muñoz, D., López-Nicolás, R., González-Bermúdez, C. A., Ros-Berruezo, G., & Frontela-Saseta, C. (2018). In vitro effect of green tea and turmeric extracts on GLP-1 and CCK secretion: The effect of gastrointestinal digestion. Food & Function, 9(10), 5245–5250.

    Article  Google Scholar 

  55. Liu, C.-Y., Huang, C.-J., Huang, L.-H., Chen, I.-J., Chiu, J.-P., & Hsu, C.-H. (2014). Effects of green tea extract on insulin resistance and glucagon-like peptide 1 in patients with type 2 diabetes and lipid abnormalities: A randomized, double-blinded, and placebo-controlled trial. PLoS One, 9(3), e91163.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hussein, G. M. E., Matsuda, H., Nakamura, S., Hamao, M., Akiyama, T., Tamura, K., et al. (2011). Mate tea (Ilex paraguariensis) promotes satiety and body weight lowering in mice: Involvement of glucagon-like peptide-1. Biological and Pharmaceutical Bulletin, 34(12), 1849–1855.

    Article  CAS  PubMed  Google Scholar 

  57. Momtazi, A. A., Derosa, G., Maffioli, P., Banach, M., & Sahebkar, A. (2016). Role of microRNAs in the therapeutic effects of curcumin in non-cancer diseases. Molecular Diagnosis and Therapy, 20(4), 335–345.

    Google Scholar 

  58. Mollazadeh, H., Cicero, A. F. G., Blesso, C. N., Pirro, M., Majeed, M., & Sahebkar, A. (2019). Immune modulation by curcumin: The role of interleukin-10. Critical Reviews in Food Science and Nutrition, 59(1), 89–101.

    Google Scholar 

  59. Teymouri, M., Pirro, M., Johnston, T. P., & Sahebkar, A. (2017). Curcumin as a multifaceted compound against human papilloma virus infection and cervical cancers: A review of chemistry, cellular, molecular, and preclinical features. BioFactors, 43(3), 331–346.

    Google Scholar 

  60. Panahi, Y., Ahmadi, Y., Teymouri, M., Johnston, T. P., & Sahebkar, A. (2018). Curcumin as a potential candidate for treating hyperlipidemia: A review of cellular and metabolic mechanisms. Journal of Cellular Physiology, 233(1), 141–152.

    Google Scholar 

  61. Iranshahi, M., Sahebkar, A., Hosseini, S. T., Takasaki, M., Konoshima, T., & Tokuda, H. (2010). Cancer chemopreventive activity of diversin from Ferula diversivittata in vitro and in vivo. Phytomedicine, 17(3–4), 269–273.

    Google Scholar 

  62. Ghandadi, M., Sahebkar, A. (2017) Curcumin: An effective inhibitor of interleukin-6. Current Pharmaceutical Design, 23(6), 921–931.

    Google Scholar 

  63. Panahi, Y., Khalili, N., Sahebi, E., Namazi, S., Simental-Mendía, L. E., Majeed, M., Sahebkar, A. (2018) Effects of Curcuminoids Plus Piperine on Glycemic, Hepatic and Inflammatory Biomarkers in Patients with Type 2 Diabetes Mellitus: A Randomized Double-Blind Placebo-Controlled Trial. Drug Research, 68(7), 403–409.

    Google Scholar 

  64. Kato, M., Nishikawa, S., Ikehata, A., Dochi, K., Tani, T., Takahashi, T., et al. (2017). Curcumin improves glucose tolerance via stimulation of glucagon-like peptide-1 secretion. Molecular Nutrition & Food Research, 61(3), 1600471.

    Article  Google Scholar 

  65. Hajavi, J., Momtazi, A. A., Johnston, T. P., Banach, M., Majeed, M., & Sahebkar, A. (2017). Curcumin: A naturally occurring modulator of adipokines in diabetes. Journal of Cellular Biochemistry, 118(12), 4170–4182.

    Article  CAS  PubMed  Google Scholar 

  66. Panahi, Y., Khalili, N., Sahebi, E., Namazi, S., Atkin, S. L., Majeed, M., et al. (2017). Curcuminoids plus piperine modulate adipokines in type 2 diabetes mellitus. Current Clinical Pharmacology, 12(4), 253–258.

    Article  CAS  PubMed  Google Scholar 

  67. Panahi, Y., Khalili, N., Sahebi, E., Namazi, S., Karimian, M. S., Majeed, M., et al. (2017). Antioxidant effects of curcuminoids in patients with type 2 diabetes mellitus: A randomized controlled trial. Inflammopharmacology, 25(1), 25–31.

    Article  CAS  PubMed  Google Scholar 

  68. Panahi, Y., Khalili, N., Sahebi, E., Namazi, S., Simental-Mendía, L. E., Majeed, M., et al. (2018). Effects of curcuminoids plus piperine on glycemic, hepatic and inflammatory biomarkers in patients with type 2 diabetes mellitus: A randomized double-blind placebo-controlled trial. Drug Research, 68(7), 403–409.

    Article  CAS  PubMed  Google Scholar 

  69. Parsamanesh, N., Moossavi, M., Bahrami, A., Butler, A. E., & Sahebkar, A. (2018). Therapeutic potential of curcumin in diabetic complications. Pharmacological Research, 136, 181–193.

    Article  CAS  PubMed  Google Scholar 

  70. Takikawa, M., Kurimoto, Y., & Tsuda, T. (2013). Curcumin stimulates glucagon-like peptide-1 secretion in GLUTag cells via Ca 2+/calmodulin-dependent kinase II activation. Biochemical and Biophysical Research Communications, 435(2), 165–170.

    Article  CAS  PubMed  Google Scholar 

  71. Thota, R. N., Dias, C. B., Abbott, K. A., Acharya, S. H., & Garg, M. L. (2018). Curcumin alleviates postprandial glycaemic response in healthy subjects: A cross-over, randomized controlled study. Scientific Reports, 8(1), 13679.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Shetty, A., Rashmi, R., Rajan, M., Sambaiah, K., & Salimath, P. (2004). Antidiabetic influence of quercetin in streptozotocin-induced diabetic rats. Nutrition Research, 24(5), 373–381.

    Article  CAS  Google Scholar 

  73. Phuwamongkolwiwat, P., Suzuki, T., Hira, T., & Hara, H. (2014). Fructooligosaccharide augments benefits of quercetin-3-O-β-glucoside on insulin sensitivity and plasma total cholesterol with promotion of flavonoid absorption in sucrose-fed rats. European Journal of Nutrition, 53(2), 457–468.

    Article  CAS  PubMed  Google Scholar 

  74. Dower, J. I., Geleijnse, J. M., Gijsbers, L., Zock, P. L., Kromhout, D., & Hollman, P. C. (2015). Effects of the pure flavonoids epicatechin and quercetin on vascular function and cardiometabolic health: A randomized, double-blind, placebo-controlled, crossover trial. The American Journal of Clinical Nutrition, 101(5), 914–921.

    Article  CAS  PubMed  Google Scholar 

  75. Gaballah, H. H., Zakaria, S. S., Mwafy, S. E., Tahoon, N. M., & Ebeid, A. M. (2017). Mechanistic insights into the effects of quercetin and/or GLP-1 analogue liraglutide on high-fat diet/streptozotocin-induced type 2 diabetes in rats. Biomedicine & Pharmacotherapy, 92, 331–339.

    Article  CAS  Google Scholar 

  76. Koole, C., Wootten, D., Simms, J., Valant, C., Sridhar, R., Woodman, O. L., et al. (2010). Allosteric ligands of the glucagon-like peptide 1 receptor (GLP-1R) differentially modulate endogenous and exogenous peptide responses in a pathway-selective manner; implications for drug screening. Molecular Pharmacology, 065664, 110.

    Google Scholar 

  77. Misawa, K., Hashizume, K., Yamamoto, M., Minegishi, Y., Hase, T., & Shimotoyodome, A. (2015). Ginger extract prevents high-fat diet-induced obesity in mice via activation of the peroxisome proliferator-activated receptor δ pathway. The Journal of Nutritional Biochemistry, 26(10), 1058–1067.

    Article  CAS  PubMed  Google Scholar 

  78. Yaribeygi, H., Simental-Mendía, L. E., Butler, A. E., & Sahebkar, A. (2018). Protective effects of plant-derived natural products on renal complications. Journal of Cellular Physiology, 234(8), 12161–12172.

    Article  PubMed  Google Scholar 

  79. Samad, M. B., Mohsin, M. N. A. B., Razu, B. A., Hossain, M. T., Mahzabeen, S., Unnoor, N., et al. (2017). [6]-gingerol, from Zingiber officinale, potentiates GLP-1 mediated glucose-stimulated insulin secretion pathway in pancreatic β-cells and increases RAB8/RAB10-regulated membrane presentation of GLUT4 transporters in skeletal muscle to improve hyperglycemia in Lepr db/db type 2 diabetic mice. BMC Complementary and Alternative Medicine, 17(1), 395.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Emery, E. C., Diakogiannaki, E., Gentry, C., Psichas, A., Habib, A. M., Bevan, S., et al. (2015). Stimulation of GLP-1 secretion downstream of the ligand-gated ion channel TRPA1. Diabetes, 64(4), 1202–1210.

    Article  CAS  PubMed  Google Scholar 

  81. Liu, C., Zhang, M., M-y, H., H-f, G., Li, J., Y-l, Y., et al. (2013). Increased glucagon-like peptide-1 secretion may be involved in anti-diabetic effects of ginsenosides. Journal of Endocrinology, 217, 12-0502.

    Article  Google Scholar 

  82. Kim, K., Park, M., Lee, Y. M., Rhyu, M. R., & Kim, H. Y. (2014). Ginsenoside metabolite compound K stimulates glucagon-like peptide-1 secretion in NCI-H716 cells via bile acid receptor activation. Archives of Pharmacal Research, 37(9), 1193–1200.

    Article  CAS  PubMed  Google Scholar 

  83. Kim, K.-S., Yang, H. J., Lee, I.-S., Kim, K.-H., Park, J., Jeong, H.-S., et al. (2015). The aglycone of ginsenoside Rg3 enables glucagon-like peptide-1 secretion in enteroendocrine cells and alleviates hyperglycemia in type 2 diabetic mice. Scientific Reports, 5, 18325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Liu, C., M-y, H., Zhang, M., Li, F., Li, J., Zhang, J., et al. (2014). Association of GLP-1 secretion with anti-hyperlipidemic effect of ginsenosides in high-fat diet fed rats. Metabolism, 63(10), 1342–1351.

    Article  CAS  PubMed  Google Scholar 

  85. Kiefer, D., & Pantuso, T. (2003). Panax ginseng. American Family Physician, 68(8), 1539–1542.

    PubMed  Google Scholar 

  86. Prabhakar, P. K., & Doble, M. (2011). Mechanism of action of natural products used in the treatment of diabetes mellitus. Chinese Journal of Integrative Medicine, 17(8), 563.

    Article  PubMed  Google Scholar 

  87. Ribnicky, D., Poulev, A., Watford, M., Cefalu, W., & Raskin, I. (2006). Antihyperglycemic activity of Tarralin™, an ethanolic extract of Artemisia dracunculus L. Phytomedicine, 13(8), 550–557.

    Article  CAS  PubMed  Google Scholar 

  88. Habib, N. C., Honoré, S. M., Genta, S. B., & Sánchez, S. S. (2011). Hypolipidemic effect of Smallanthus sonchifolius (yacon) roots on diabetic rats: Biochemical approach. Chemico-Biological Interactions, 194(1), 31–39.

    Article  CAS  PubMed  Google Scholar 

  89. Rocca, A. S., LaGreca, J., Kalitsky, J., & Brubaker, P. L. (2001). Monounsaturated fatty acid diets improve glycemic tolerance through increased secretion of glucagon-like peptide-1. Endocrinology, 142(3), 1148–1155.

    Article  CAS  PubMed  Google Scholar 

  90. Tolhurst, G., Zheng, Y., Parker, H. E., Habib, A. M., Reimann, F., & Gribble, F. M. (2011). Glutamine triggers and potentiates glucagon-like peptide-1 secretion by raising cytosolic Ca2+ and cAMP. Endocrinology, 152(2), 405–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Stull, A. (2016). Blueberries’ impact on insulin resistance and glucose intolerance. Antioxidants, 5(4), 44.

    Article  PubMed Central  Google Scholar 

Download references

Conflict of Interests

The authors declare no conflict of interest in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirhossein Sahebkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yaribeygi, H., Jamialahmadi, T., Moallem, S.A., Sahebkar, A. (2021). Boosting GLP-1 by Natural Products. In: Sahebkar, A., Sathyapalan, T. (eds) Natural Products and Human Diseases. Advances in Experimental Medicine and Biology(), vol 1328. Springer, Cham. https://doi.org/10.1007/978-3-030-73234-9_36

Download citation

Publish with us

Policies and ethics