Skip to main content
Log in

Development of an Electric Arc Furnace Simulation Model Using the Effective Equilibrium Reaction Zone (EERZ) Approach

  • Computational Modeling of Metallurgical Furnaces
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The development of a kinetic process model for the electric arc furnace (EAF) based on the effective equilibrium reaction zone approach is presented. The model combines kinetic expressions with accurate thermodynamic databases to predict the evolution of the mass, temperature and composition of the scrap, liquid metal, slag and gas phase during the process. The model addresses all the main phenomena occurring during the EAF process using empirical relations linked to process conditions: charge heating by arc and burners, scrap melting, C and O2 injection, slag-metal-gas reactions and post-combustion. The model can effectively reproduce measured endpoint temperature and composition of the slag and liquid metal in industrial EAF and illustrates the benefits of the hot heel practice. The model serves as a tool to assist in the optimization of the process operation conditions and in the design and evaluation of new process scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Madias, Treatise on Process Metallurgy - Volume 3: Industrial Processes, ed. S. Seetharaman (Elsevier, Oxford, UK, ), pp. 271–300

  2. International Energy Agency, Iron and Steel Technology Roadmap (International Energy Agency, Paris, 2020).

    Book  Google Scholar 

  3. H.J. Odenthal, A. Kemminger, F. Krause, L. Sankowski, N. Uebber, and N. Vogl, Steel Res. Int. 89, 1700098. (2018).

    Article  Google Scholar 

  4. J.G. Bekker, I.K. Craig, and P.C. Pistorius, ISIJ Int. 39, 23–32. (1999).

    Article  Google Scholar 

  5. R.D. Morales, H. Rodríguez-Hernández, and A.N. Conejo, ISIJ Int. 41, 426–435. (2001).

    Article  Google Scholar 

  6. R.D. Morales, A.N. Conejo, and H.H. Rodriguez, Metall. Mater. Trans. B 33, 187–199. (2002).

    Article  Google Scholar 

  7. R.D.M. MacRosty, and C.L.E. Swartz, Ind. Eng. Chem. Res. 44, 8067–8083. (2005).

    Article  Google Scholar 

  8. H. Matsuura, C.P. Manning, R.A.F.O. Fortes, and R.J. Fruehan, ISIJ Int. 48, 1197–1205. (2008).

    Article  Google Scholar 

  9. V. Logar, D. Dovžan, and I. Škrjanc, ISIJ Int. 52, 402–412. (2012).

    Article  Google Scholar 

  10. V. Logar, D. Dovžan, and I. Škrjanc, ISIJ Int. 52, 413–423. (2012).

    Article  Google Scholar 

  11. F. Opitz, and P. Treffinger, Metall. Mater. Trans. B 47, 1489–1503. (2016).

    Article  Google Scholar 

  12. F. Opitz, P. Treffinger, and J. Wöllenstein, Metall. Mater. Trans. B 48, 3301–3315. (2017).

    Article  Google Scholar 

  13. T. Meier, K. Gandt, T. Hay, and T. Echterhof, Steel Res. Int. 89, 1700487. (2018).

    Article  Google Scholar 

  14. T. Hay, A. Reimann, and T. Echterhof, Metall. Mater. Trans. B 50, 2377–2388. (2019).

    Article  Google Scholar 

  15. A. Fathi, Y. Saboohi, I. Škrjanc, and V. Logar, Steel Res. Int. 88, 1600083. (2017).

    Article  Google Scholar 

  16. Y. Saboohi, A. Fathi, I. Skrjanc, and V. Logar, IEEE Trans. Ind. Electron. 66, 8030–8039. (2019).

    Article  Google Scholar 

  17. T. Hay, V.V. Visuri, M. Aula, and T. Echterhof, Steel Res. Int. 92, 2000395. (2021).

    Article  Google Scholar 

  18. M.A. Van Ende, Y.M. Kim, M.K. Cho, J. Choi, and I.H. Jung, Metall. Mater. Trans. B 42, 477–489. (2011).

    Article  Google Scholar 

  19. E. Moosavi-Khoonsari, M.A. Van Ende and I.H. Jung, Kinetic model for hot metal pretreatment using lime and magnesium. Paper presented at the ICS 2018 - 7th International Congress on Science and Technology of Steelmaking, Venice, Italy, June 13-15 2018

  20. M.A. Van Ende, and I.H. Jung, CAMP-ISIJ 28, 527–530. (2015).

    Google Scholar 

  21. M.A. Van Ende and I.H. Jung, A kinetic BOF process simulation model. Paper presented at the Asia Steel International Conference, Yokohama, Japan, October 5–8 2015.

  22. D. You, C. Bernhard, P. Mayer, J. Fasching, G. Kloesch, R. Rössler, and R. Ammer, Metall. Mater. Trans. B 52, 1854–1865. (2021).

    Article  Google Scholar 

  23. M.A. Van Ende, and I.H. Jung, ISIJ Int. 54, 489–495. (2014).

    Article  Google Scholar 

  24. M.A. Van Ende, and I.H. Jung, Metall. Mater. Trans. B 48, 28–36. (2017).

    Article  Google Scholar 

  25. I.H. Jung, and M.A. Van Ende, Metall. Mater. Trans. B 51, 1851–1874. (2020).

    Article  Google Scholar 

  26. D. Kumar, K.C. Ahlborg, and P.C. Pistorius, Metall. Mater. Trans. B 50, 2163–2174. (2019).

    Article  Google Scholar 

  27. D. You, S.K. Michelic, and C. Bernhard, Steel Res. Int. 91, 2000045. (2020).

    Article  Google Scholar 

  28. Y. Ren, L. Zhang, H. Ling, Y. Wang, D. Pan, Q. Ren, and X. Wang, Metall. Mater. Trans. B 48, 1433–1438. (2017).

    Article  Google Scholar 

  29. S.P.T. Piva, D. Kumar, and P.C. Pistorius, Metall. Mater. Trans. B 48, 37–45. (2017).

    Article  Google Scholar 

  30. J.H. Shin, Y. Chung, and J.H. Park, Metall. Mater. Trans. B 48, 46–59. (2017).

    Article  Google Scholar 

  31. C. Xuan, E.S. Persson, J. Jensen, R. Sevastopolev, and M. Nzotta, J. Alloys Compd. 812, 152149. (2020).

    Article  Google Scholar 

  32. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, and M.A. Van Ende, Calphad 54, 35–53. (2016).

    Article  Google Scholar 

  33. S. Petersen, and K. Hack, Int. J. Mat. Res. 98, 935–945. (2007).

    Article  Google Scholar 

  34. H. Gaye, M. Wanin, P. Gugliermina and P. Schittly, Kinetics of scrap dissolution in the converter, theoretical model and plant experimentation. Paper presented at the Steelmaking Conference Proceedings, Detroit, MI, April 14–17 1985.

  35. D.A. Goldstein, and R.J. Fruehan, Metall. Mater. Trans. B 30, 945–956. (1999).

    Article  Google Scholar 

  36. G.H. Li, B. Wang, Q. Liu, X.Z. Tian, R. Zhu, L.N. Hu, and G.G. Cheng, Int. J. Miner. Metall. Mater. 17, 715–722. (2010).

    Google Scholar 

  37. N. Dogan, G.A. Brooks, and M.A. Rhamdhani, ISIJ Int. 51, 1102–1109. (2011).

    Article  Google Scholar 

  38. J. Peter, K.D. Peaslee, D.G.C. Robertson and B.G. Thomas, Experimental study of kinetic processes during the steel treatment at two LMF's. Paper presented at the AISTech 2005, Charlotte, N.C., May 9–12 2005.

  39. K.J. Graham, and G.A. Irons, Iron Steel Technol. 6, 164–173. (2009).

    Google Scholar 

  40. A. Harada, N. Maruoka, H. Shibata, and S.Y. Kitamura, ISIJ Int. 53, 2110–2117. (2013).

    Article  Google Scholar 

  41. J. Li, G. Brooks, and N. Provatas, Metall. Mater. Trans. B 36, 293–302. (2005).

    Article  Google Scholar 

  42. R. Inoue, and H. Suito, ISIJ Int. 46, 174–179. (2006).

    Article  Google Scholar 

  43. F. Pahlevani, K. Shinya, H. Shibata, and N. Maruoka, ISIJ Int. 50, 822–829. (2010).

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from Tata Steel Europe, Posco, Hyundai Steel, Nucor Steel, RioTionto Iron and Titanium, Nippon Steel Corp., JFE Steel, Voestalpine, RHI Magnesita, SeAH Besteel, Doosan Heavy Industry and Construction, and SCHOTT AG is gratefully acknowledged. This work was also partially supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean government (MOTIE) (20217510100080, Development of critical metal recovery technologies (capacity of 200 kg/day) from low-grade solid wastes for the foundation of open access recycling platform).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Aline Van Ende.

Ethics declarations

Conflict of interests

The present author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Ende, MA. Development of an Electric Arc Furnace Simulation Model Using the Effective Equilibrium Reaction Zone (EERZ) Approach. JOM 74, 1610–1623 (2022). https://doi.org/10.1007/s11837-022-05186-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05186-3

Navigation