Skip to main content
Log in

Improving the Modeling of Slag and Steel Bath Chemistry in an Electric Arc Furnace Process Model

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

An improvement to the thermochemical module of the electric arc furnace (EAF) process model developed by Meier based on the work of Logar, Dovžan, and Škrjanc is presented. Different models for the calculation of activities in melt and slag are implemented, and separate reaction zones are defined for the interaction of slag and melt, the injection of oxygen, and the injection of carbon. For each zone, equilibrium compositions and reaction rates are calculated. Furthermore, diffusion of species is considered as a rate-limiting factor in reactions between slag and melt, and diffusion rates are calculated from the bulk melt to the reaction zone where reactions with the slag take place. Oxygen and sulfur dissolved in the melt and CaS in the slag are added as new species not previously considered in the EAF model. The treatment of carbon is revised to reduce model complexity and improve accuracy. The improved model is validated using extensive data from an industrial EAF, and results are compared to measured data as well as results obtained with the unmodified model. The different models for the determination of thermodynamic activities and their impacts on the duration of the simulation as well as its results are evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

EAF:

Electric arc furnace

RSM:

Regular solution model

UIP:

Unified interaction parameter formalism

lSc:

Melt zone

lSl:

Slag zone

sSc:

Solid scrap zone

sSl:

Solid slag (charged slag formers) zone

wall:

Furnace walls

roof:

Furnace roof

gas:

Gas zone

arc:

Electric arc(s)

el:

Electrode(s)

pks:

Palm kernel shells

WIPF:

Wagner interaction parameter formalism

α :

Interaction parameter RSM

ε :

Interaction parameter UIP/WIPF (molar)

ν :

Stoichiometric coefficient

ɣ :

Activity coefficient (molar)

Φ:

Stoichiometric oxygen mass per mass of reacting element

a :

Activity

e ij :

Interaction parameter UIP/WIPF (mass pct)

f :

Activity coefficient (mass pct)

ΔG 0 :

Free enthalpy of reaction

H EAF :

Height of furnace

H Scrap :

Height of scrap inside furnace (at the wall)

I′:

Conversion factor RSM

K eq :

Equilibrium constant

k :

Equilibrium correction factor

kddiff/react :

Ratio of diffusion to reaction rates

kd:

Reaction parameter

k conv-gas :

Fraction of lanced carbon oxidized by carrier gas (air)

k loss :

Fraction of injected carbon not reacting (lost with off-gas)

\( k_{{\text{C-inj-CO}}_{2}}\) :

Fraction of injected carbon reacting further to CO2

\( k_{{{\text{FeO-O}}_{2} }} \) :

Reaction parameter for oxidation of scrap with O2 from atmosphere

\( k_{{{\text{O-inj-diss}}}} \) :

Fraction of injected oxygen dissolving in melt

m :

Mass

\( \dot{m}_{{{\text{C-res-inj}}}} \) :

Mass flow Carbon from reservoir becoming available for slag reactions

\( \dot{m}_{{{\text{C-inj-temp}}}} \) :

Mass injected Carbon from input data

\( \dot{m}_{{{\text{C-inj}}}} \) :

Mass flow of carbon for slag reactions at carbon injection site

\( \dot{m}_{i}^{j} \) :

Mass flow of element i in reaction zone j from chemical reaction

\( \dot{m}_{\Delta } \) :

Mass flow to maintain mass of melt in interface zone

\( \dot{m}_{\text{FeO}}^{\text{atm}} \) :

Mass flow of FeO from oxidation of scrap with O2 from atmosphere

pCO :

CO partial pressure

R :

Gas constant

T :

Temperature

w :

Mass fraction (pct)

X :

Molar fraction

X′:

Cation fraction

Slag:

Slag zone

Diffusion:

Mass flows resulting from diffusion

bulk:

Bulk melt zone

interface:

Interface zone

total:

sum of all mass flows in interface zone

oxide:

Oxide in slag zone

eq:

At equilibrium

C-inj:

Carbon injection zone

O-inj:

Oxygen injection zone

Slagformer:

Charged slag formers (chalk, dolomite)

References

  1. P. Nyssen, G. Monfort, J. L. Junque, M. Brimmeyer, P. Hubsch, J. C. Baumert: STEELSIM Conference, Graz/Seggau, Austria, 2007

    Google Scholar 

  2. A. Cameron: Steel Times, 1999, vol. 227, pp. 7-10

    Google Scholar 

  3. M. Hofer, P. L. Steger, J. Lehner, W. Gebert: Iron Steel Eng., 1997, vol. 40, pp. 35-42

    Google Scholar 

  4. A. Linninger, M. Hofer, A. Patuzzi: Iron Steel Eng., 1995, vol. 72, pp. 43-53

    CAS  Google Scholar 

  5. S. Matson, W. F. Ramirez: Electric Furnace Conference, 57, Warrendale (Pennsylvania, USA), 1999

    Google Scholar 

  6. S. A. Matson, W. F. Ramirez: Electric Furnace Conference, 55, Chicago (Illinois, USA), 1997

    Google Scholar 

  7. S. A. Matson, W. F. Ramirez, P. Safe: Electric Furnace Conference, 56, New Orleans (Louisiana, USA), 1998

    Google Scholar 

  8. J.G. Bekker: Master Thesis, University of Pretoria, Pretoria, South Africa, 1998

  9. J. G. Bekker, I. K. Craig, P. C. Pistorius: ISIJ Int., 1999, vol. 39, pp. 23-32

    Article  CAS  Google Scholar 

  10. M. Modigell, A. Traebert, P. Monheim: AISE Annual Convention & Mini-Expo, 2001

  11. A. Traebert, M. Modigell, P. Monheim, K. Hack: Scand. J. Metall., 1999, vol. 28, pp. 285-290

    CAS  Google Scholar 

  12. R. D. Morales, A. N. Conejo, H. H. Rodriguez: Metall. Mater. Trans. B, 2002, vol. 33, pp. 187-199

    Article  CAS  Google Scholar 

  13. R. D. Morales, H. Rodríguez-Hernández, A. N. Conejo: ISIJ Int., 2001, vol. 41, pp. 426-436

    Article  CAS  Google Scholar 

  14. R. D. M. MacRosty, C. L. E. Swartz: Ind. Eng. Chem. Res., 2005, vol. 44, pp. 8067-8083

    Article  CAS  Google Scholar 

  15. R. D. M. MacRosty, C. L. E. Swartz: AIChE J., 2007, vol. 53, pp. 640-653

    Article  CAS  Google Scholar 

  16. A. Fathi, Y. Saboohi, I. Škrjanc, V. Logar: Steel Res. Int., 2017, vol. 83, p. 1600083

    Article  Google Scholar 

  17. T. Meier, K. Gandt, T. Hay, T. Echterhof: Steel Res. Int., 2018, vol. 89, p. 1700487

    Article  Google Scholar 

  18. V. Logar, D. Dovžan, I. Škrjanc: ISIJ Int., 2012, vol. 52, pp. 402-412

    Article  CAS  Google Scholar 

  19. V. Logar, D. Dovžan, I. Škrjanc: ISIJ Int., 2012, vol. 52, pp. 413-423

    Article  CAS  Google Scholar 

  20. V. Logar, D. Dovžan, I. Škrjanc: ISIJ Int., 2011, vol. 51, pp. 382-391

    Article  CAS  Google Scholar 

  21. V. Logar, I. Škrjanc: ISIJ Int., 2012, vol. 52, pp. 1225-1232

    Article  CAS  Google Scholar 

  22. T. Meier: Modellierung und Simulation des Elektrolichtbogenofens, Mainz, Aachen, Germany, 2016

    Google Scholar 

  23. T. Meier, K. Gandt, T. Echterhof, H. Pfeifer: Metall. Mater. Trans. B, 2017, vol. 48, pp. 3329-3344

    Article  Google Scholar 

  24. T. Meier, T. Hay, T. Echterhof, H. Pfeifer, T. Rekersdrees, L. Schlinge, S. Elsabagh, H. Schliephake: Steel Res. Int., 2017, vol. 88, p. 1600458

    Article  Google Scholar 

  25. T. Meier, V. Logar, T. Echterhof, Š. Igor, H. Pfeifer: Steel Res. Int., 2015, vol. 86

  26. A. Fathi, Y. Saboohi, I. Škrjanc, V. Logar: ISIJ Int., 2015, vol. 55, pp. 1353-1360

    Article  CAS  Google Scholar 

  27. J. In-Ho, Calphad, 2010, vol. 34, pp. 332-362

    Article  Google Scholar 

  28. C. W. Bale, A. D. Pelton: Metall. Trans. A, 1990, vol. 21, pp. 1997-2002

    Article  Google Scholar 

  29. J. F. Elliot, M. Gleiser, V. Ramakrishna (1963) Thermochemistry for Steelmaking. Addison-Wesley,

    Google Scholar 

  30. S. Ban-Ya: ISIJ Int., 1993, vol. 33, pp. 2-11

    Article  Google Scholar 

  31. H. Gaye, J. Lehmann: 5th International Conference on Molten Slags, Fluxes and Salts, Sidney, Australia, 1997

  32. L.C. Oertel, A. Costa e Silva: Calphad, 1999, vol. 23, pp. 379–91

  33. K.J. Graham: Doctor of Philosophy Thesis, McMaster University, 2008

  34. H. Gaye, J. Lehmann, T. Matsumiya, W. Yamada: 4th International Conference on Molten Slags and Fluxes, Sendai, Japan, 1992

  35. E. T. Turkdogan: Fundamentals of steelmaking, Manay, Leeds, GB, 2010

    Google Scholar 

  36. A.N. Conejo, F.R. Lara, M. Macias-Hernandez, R.D. Morales: Steel Res. Int., 2007, vol. 78,

  37. R. Ding, B. Blanpain, P. T. Jones, P. Wollants: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 197-206

    Article  CAS  Google Scholar 

  38. Y. Xiao, L. Holappa: INFACON 7, Trondheim, Norway, 1995

    Google Scholar 

  39. B. Deo, R. Boom: Fundamentals of Steelmaking Metallurgy, Prentice Hall International, 1993

    Google Scholar 

  40. S. Basu, A. K. Lahiri, S. Seetharaman: ISIJ Int., 2007, vol. 47, pp. 1236-1238

    Article  CAS  Google Scholar 

  41. S.K. Choudhary: Ironmak. Steelmak. 2007, vol. 34

  42. M.A. Tayeb, R.J. Fruehan, S. Sridhar: Proceedings of the 2013 International Symposouim on Liquid Metal Processing & Casting 2013

  43. S. Ueno, Y. Waseda, K. T. Jacob, S. Tamaki: Steel Res., 1988, vol. 59, pp. 474-483

    Article  CAS  Google Scholar 

  44. A.V. Alpatov, S.N. Paderin: Russ. Metall. (Engl. Transl.), 2009, vol. 2010, pp. 557–64

  45. I.-H. Jung: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 493-507

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 5, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hay, T., Reimann, A. & Echterhof, T. Improving the Modeling of Slag and Steel Bath Chemistry in an Electric Arc Furnace Process Model. Metall Mater Trans B 50, 2377–2388 (2019). https://doi.org/10.1007/s11663-019-01632-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01632-x

Navigation