Skip to main content
Log in

A Kinetic Model for the Ruhrstahl Heraeus (RH) Degassing Process

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A kinetic model (effective equilibrium reaction zone model) was developed to simulate the decarburization reaction in the Ruhrstahl Heraeus (RH) degassing process. The model assumes that the chemical reactions reach equilibrium in the designated effective reaction volumes near the reaction interfaces. After the RH degassing process was divided into various reaction zones, the effective reaction volumes of each reaction zone were expressed as a function of the process conditions based on the physical descriptions of the reaction mechanisms. The influence of the chemical reaction between the RH slag and the RH steel to the decarburization phenomena was considered for the first time. The calculated C and O profiles by the present model are in good agreement with the industrial operation data for various steel compositions and process conditions. RH slag can serve as an oxygen reservoir to supply O during the RH decarburization process, which induces the observed deviation of the C and O contents from their ideal stoichiometric trajectory. The present model provides an efficient tool to understand the RH degassing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. T. Kuwabara, K. Umezawa, K. Mori, and H. Watanabe: Trans. ISIJ, 1988, vol. 28, no. 4, pp. 305-14.

    CAS  Google Scholar 

  2. R. Tsujino, J. Nakashima, M. Hirai, and I. Sawada: ISIJ Int., 1989, vol. 29, no. 7, pp. 589-95.

    Article  CAS  Google Scholar 

  3. Y. Kato, H. Nakato, T. Fujii, S. Ohmiya, and S. Takatori: ISIJ Int., 1993, vol. 33, no. 10, pp. 1088-94.

    Article  Google Scholar 

  4. Y.G. Park, W.C. Doo, K.W. Yi, and S.B. An: ISIJ Int., 2000, vol. 40, no. 8, pp. 749-55.

    Article  CAS  Google Scholar 

  5. Y.G. Park and K.W. Yi: ISIJ Int., 2003, vol. 43, no. 9, pp. 1403-09.

    Article  CAS  Google Scholar 

  6. S.K. Ajmani, S.K. Dash, S. Chandra, and C. Bhanu: ISIJ Int., 2004, vol. 44, no. 1, pp. 82-90.

    Article  CAS  Google Scholar 

  7. J.F. Domgin, P. Gardin, H. Saint-Raymond, F. Stouvenot, and D. Huin: Steel Res. Int., 2005, vol. 76, no. 1, pp. 5-12.

    CAS  Google Scholar 

  8. J.H. Wei and H.T. Hu: Steel Res. Int., 2006, vol. 77, no. 1, pp. 32-36.

    CAS  Google Scholar 

  9. D.Q. Geng, H. Lei, and J.C. He: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 234-47.

    Article  CAS  Google Scholar 

  10. V. Seshadri and S. Costa: Trans. ISIJ, 1986, vol. 26, no. 2, pp. 133-38.

    Google Scholar 

  11. C. Kamata, S. Hayashi, and K. Ito: Tetsu-To-Hagané, 1998, vol. 84, no. 7, pp. 484-89.

    CAS  Google Scholar 

  12. Y.H. Jang, Y.T. Kim, and K.W. Yi: J. Kor. Inst. Met. Mater., 2010, vol. 48, no. 5, pp. 424-29.

    Article  CAS  Google Scholar 

  13. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, C. Robelin, and S. Petersen: CALPHAD, 2009, vol. 33, no. 2, pp. 295-311.

    Article  CAS  Google Scholar 

  14. FactSage: http://www.factsage.com, 2010.

  15. J. Lehmann, N. Botems, M. Simonnet, P. Gardin, and L. Zhang: Proc. Int. Conf. on Advances in Theory of Ironmaking and Steelmaking, Indian Institute of Science, Bangalore, India, 2009, pp. 232-39.

    Google Scholar 

  16. A.D. Pelton and M. Blander: Proc. 2nd Int. Symp. on Metallurgical Slags and Fluxes, TMS AIME, Lake Tahoe, NV, 1984, pp. 281-94.

    Google Scholar 

  17. A.D. Pelton and M. Blander: Metall. Trans. B, 1986, vol. 17B, pp. 805-15.

    Article  CAS  Google Scholar 

  18. A.D. Pelton: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 869-76.

    Article  CAS  Google Scholar 

  19. I.H. Jung, S.A. Decterov, and A.D. Pelton: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 493-507.

    Article  CAS  Google Scholar 

  20. R. Ding, B. Blanpain, P.T. Jones, and P. Wollants: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 197-206.

    Article  CAS  Google Scholar 

  21. Y.-S. Hsieh, Y. Watanabe, S. Asai, and I. Muchi: Tetsu-To-Hagané, 1983, vol. 69, no. 6, pp. 596-603.

    CAS  Google Scholar 

  22. D. Thompson and B.B. Argent: T. I. Min. Metall. C, 2007, vol. 116, no. 2, pp. 115-22.

    CAS  Google Scholar 

  23. R. Pajarre, P. Koukkari, and K. Penttilä: Comput. Chem. Eng., 2008, vol. 25, pp. 889-94.

    Article  CAS  Google Scholar 

  24. K. Penttilä and M. Yokota: VTT Research Notes - Advanced Gibbs Energy Methods for Functional Materials and Processes, Ed. P. Koukkari, VTT Technical Research Centre, Helsinki, Finland, 2009, pp. 103-23.

    Google Scholar 

  25. METSIM Process Simulator: http://www.metsim.com, 2010.

  26. D.G.C. Robertson: Proc. EPD Congress 1995, Symp. TMS Annual Meeting, The Minerals, Metals and Materials Society, Las Vegas, NV, 1995, pp. 347–61.

  27. J. Peter, K.D. Peaslee, D.G.C. Robertson, and B.G. Thomas: Proc. AISTech 2005 - Iron & Steel Technology Conf., AIST, Charlotte, NC, 2005,pp. 959-73.

    Google Scholar 

  28. S.N. Lekakh, D.G.C. Robertson, C.H. Rawlins, V.L. Richards, and K.D. Peaslee: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 484-92.

    Article  CAS  Google Scholar 

  29. S. Kitamura, K. Miyamoto, and R. Tsujino: Tetsu-To-Hagané, 1994, vol. 80, no. 2, pp. 101-06.

    CAS  Google Scholar 

  30. S. Kitamura, M. Yano, K. Harashima, and N. Tsutumi: Tetsu-To-Hagané, 1994, vol. 80, no. 3, pp. 213-18.

    CAS  Google Scholar 

  31. T. Kitamura, K. Miyamoto, R. Tsujino, S. Mizoguchi, and K. Kato: ISIJ Int., 1996, vol. 36, no. 4, pp. 395-401.

    Article  CAS  Google Scholar 

  32. H. Saint-Raymond, D. Huin, and F. Stouvenot: Mater. Trans. JIM, 2000, vol. 41, no. 1, pp. 17-21.

    CAS  Google Scholar 

  33. N. Maruoka, F. Lazuardi, H. Nogami, G.S. Gupta, and S. Kitamura: ISIJ Int., 2010, vol. 50, no. 1, pp. 89-94.

    Article  CAS  Google Scholar 

  34. S. Kitamura, H. Aoki, K. Miyamoto, H. Furuta, K. Yamashita, and K. Yonezawa: ISIJ Int., 2000, vol. 40, no. 5, pp. 455-59.

    Article  CAS  Google Scholar 

  35. J.E. Lee: Report CFD Simulation for RH Process of Gwangyang Steelworks, Research Institute of Industrial Science and Technology, Pohang, Korea, 2010.

  36. I.H. Jung: ISIJ Int., 2009, vol. 49, no. 8, pp. 1272-75.

    Article  CAS  Google Scholar 

  37. C.H. Keum, S.M. Seo, and J.H. Choi: Report Improvement of RH Refining Capacity of Ultra Low Carbon Steel, POSCO Research, Pohang, Korea, 2007.

    Google Scholar 

Download references

Acknowledgment

The authors wish to thank POSCO and the Research Institute of Industrial Science and Technology for their financial support and industrial run data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Ho Jung.

Additional information

Manuscript submitted October 5, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Ende, MA., Kim, YM., Cho, MK. et al. A Kinetic Model for the Ruhrstahl Heraeus (RH) Degassing Process. Metall Mater Trans B 42, 477–489 (2011). https://doi.org/10.1007/s11663-011-9495-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-011-9495-4

Keywords

Navigation