Skip to main content
Log in

Modeling of Radiative Heat Transfer in an Electric Arc Furnace

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Radiation is an important means of heat transfer inside an electric arc furnace (EAF). To gain insight into the complex processes of heat transfer inside the EAF vessel, not only radiation from the surfaces but also emission and absorption of the gas phase and the dust cloud need to be considered. Furthermore, the radiative heat exchange depends on the geometrical configuration which is continuously changing throughout the process. The present paper introduces a system model of the EAF which takes into account the radiative heat transfer between the surfaces and the participating medium. This is attained by the development of a simplified geometrical model, the use of a weighted-sum-of-gray-gases model, and a simplified consideration of dust radiation. The simulation results were compared with the data of real EAF plants available in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

Nu:

Nusselt number

Pr:

Prandtl number

Re:

Reynolds number

\( \bar{\alpha } \) :

Geometric-mean absorption coefficient

ε :

Emissivity

θ :

Angle measured from normal of surface (rad)

κ :

Extinction coefficient

λ :

Wave length (m)

ρ :

Density (kg m−3)

σ :

Stefan-Boltzmann constant

\( \bar{\tau } \) :

Geometric-mean transmission coefficient

a :

Absorption coefficient (m−1)

A :

Area (m2)

B d :

Dust load (kg m−3)

c :

Speed of light (m s−1)

c, c v :

Specific heat capacity (J kg−1 K−1)

C :

Parameter of mean beam length

d, D :

Diameter (m)

e :

Emissive power (W m−2)

F :

View factor

h :

Planck constant (J s)

h :

Specific enthalpy (J kg−1)

h 12 :

Coefficient of heat transfer (W m−2 K−1)

H :

Height (m)

i λ :

Spectral radiation intensity (W m−2 µm−1 sr−1)

k :

Boltzmann constant (J K−1)

k 12 :

Pressure loss coefficient

l :

Length (m)

L e :

Mean beam length (m)

m :

Mass (kg)

\( \dot{m} \) :

Mass flow rate (kg s−1)

m λ :

Complex refractive index

n :

Normal direction

n λ :

Refractive index

N :

Number of elements

p :

Pressure (Pa)

P :

Power (W)

q :

Energy flux (W m−2)

\( \dot{Q} \) :

Heat flow rate (W)

Q λ,e/s/a :

Extinction/scattering/absorption efficiency

r :

Radius (m)

r, z, φ :

Cylindrical coordinates

s :

Share

S :

Path of radiation (m)

t:

Time (s)

T :

Temperature (K)

V :

Volume (m3)

w :

Weight of gray gas,

x :

Mass fraction

x p :

Size parameter of Mie theory

Y :

Molar fraction

a:

Arc

b:

Basket

bl:

Black body condition

conv:

Convective

cw:

Cooling water

d:

Dust

g:

Gas

high:

High dust model

in:

Incoming

l:

Liquid phase/melt

low:

Low dust model

out:

Outgoing

p:

Particle

r:

Roof

rad:

Radiation

ref:

Reference value

rv:

Radiation volume

s:

Solid phase/scrap

sl:

Slag

v:

Vessel

w:

Wall

CFD:

Computational fluid dynamics

DC:

Direct current

EAF:

Electric arc furnace

WSGG:

Weighted sum of gray gases

References

  1. F. Opitz and P. Treffinger: Metall. Mater. Trans. B, 2016, vol. 47, pp. 1489–1503, DOI:10.1007/s11663-015-0573-x.

    Article  Google Scholar 

  2. R. D. M. MacRosty and C. L. E. Swartz: Ind. Eng. Chem. Res., 2005, vol. 44, pp. 8067–83, DOI:10.1021/ie050101b.

    Article  Google Scholar 

  3. V. Logar and I. Škrjanc: ISIJ Int., 2012, vol. 52, pp. 1225–32, DOI:10.2355/isijinternational.52.1225.

    Article  Google Scholar 

  4. T. Meier, A. H. Kolagar, T. Echterhof, and H. Pfeifer, In: 11th European Electric Steelmaking Conference, Venice, Italy, 2016.

    Google Scholar 

  5. J. Alexis, M. Ramirez, G. Trapaga, and P. Jönsson: ISIJ Int., 2000, vol. 40, pp. 1089–97.

    Article  Google Scholar 

  6. Guo D., Irons G.A.: Third International Conference on CFD in the Minerals and Process Industries, Melbourne. Australia, 2003, pp. 223–28.

  7. Jordan G., Sheridan A.T., Montgomery R.W., Danby M.: Basic properties of high intensity electric arcs used in steelmaking, Steel research report 6210.93/8/801Commission of the European Communities, 1976.

  8. B. Bowman and K. Krüger: Arc Furnace Physics, Verlag Stahleisen, Düsseldorf, 2009.

    Google Scholar 

  9. V. Logar, D. Dovžan, and I. Škrjanc: ISIJ Int., 2012, vol. 52, pp. 402–12, DOI:10.2355/isijinternational.52.402.

    Article  Google Scholar 

  10. F. Opitz, P. Treffinger, J. Wöllenstein, and R. Schweikle, In: 11th European Electric Steelmaking Conference, Venice, Italy, 2016.

    Google Scholar 

  11. Howell J.R.: A Catalog of Radiation Heat Transfer Configuration Factors, University of Texas, 2016. http://www.thermalradiation.net/indexCat.html, Last visited: 2016-06-08.

  12. R. Siegel and J. R. Howell: Thermal Radiation Heat Transfer, 4th ed., Taylor & Francis, New York/London, 2002.

    Google Scholar 

  13. R. Johansson, B. Leckner, K. Andersson, and F. Johnsson: Combust. Flame, 2011, vol. 158, pp. 893–901, DOI:10.1016/j.combustflame.2011.02.001.

    Article  Google Scholar 

  14. Richter W., Görner K.: in VDI Heat Atlas, VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (GVC) (ed.), 2010, pp. 1001–12.

  15. Mätzler C.: MATLAB Functions for Mie Scattering and Absorption, University of Bern, 2002. http://omlc.org/software/mie, Last visited: 2016-06-02.

  16. M. Neubronner: Strahlungswärmeübertragung von Aschepartikeln aus Kohlefeuerungen, VDI Verlag, Düsseldorf, 2000.

    Google Scholar 

  17. M. Alizadeh and M. Momeni: Constr. Build. Mater., 2016, vol. 112, pp. 1041–45, DOI:10.1016/j.conbuildmat.2016.03.011.

    Article  Google Scholar 

  18. M. C. da Silva, A. M. Bernardes, C. P. Bergmann, J. A. S. Tenorio, and D. C. R. Espinosa: Ironmaking Steelmaking, 2008, vol. 35, pp. 315–20, DOI:10.1179/030192307X232936.

    Article  Google Scholar 

  19. M. C. Mantovani, C. Takano, and P. M. Büchler: Ironmaking Steelmaking, 2004, vol. 31, pp. 325–32, DOI:10.1179/030192304225018163.

    Article  Google Scholar 

  20. Rizescu C.-Z., Bacinschi Z., Stoian E.-V., Poinescu A.-A.:4th WSEAS International Conference on Waste Management, Water Pollution, Air Pollution, Indoor Climate (WWAI ‘10), Sousse, Tunisia. 2010, pp. 139–43.

  21. H. Yoshikawa and S. Adachi: Jpn. J. Appl. Phys., 1997, vol. 36, pp. 6237–43.

    Article  Google Scholar 

  22. Gnielinski V.: in VDI Heat Atlas, VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (GVC) (ed.), 2010, pp. 693–99.

  23. V. Logar, D. Dovžan, and I. Škrjanc: ISIJ Int., 2011, vol. 51, pp. 382–91, DOI:10.2355/isijinternational.51.382.

    Article  Google Scholar 

Download references

Acknowledgments

This research project is funded by the German Federal Ministry of Education and Research (BMBF) within the framework concept ‘IngenieurNachwuchs‘ (Grant Number 03FH00212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Opitz.

Additional information

Manuscript submitted February 20, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Opitz, F., Treffinger, P. & Wöllenstein, J. Modeling of Radiative Heat Transfer in an Electric Arc Furnace. Metall Mater Trans B 48, 3301–3315 (2017). https://doi.org/10.1007/s11663-017-1078-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-1078-6

Keywords

Navigation