Skip to main content

Advertisement

Log in

Physics-Based Modeling of Electric Operation, Heat Transfer, and Scrap Melting in an AC Electric Arc Furnace

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Electric arc furnaces (EAF) are complex industrial plants whose actual behavior depends upon numerous factors. Due to its energy intensive operation, the EAF process has always been subject to optimization efforts. For these reasons, several models have been proposed in literature to analyze and predict different modes of operation. Most of these models focused on the processes inside the vessel itself. The present paper introduces a dynamic, physics-based model of a complete EAF plant which consists of the four subsystems vessel, electric system, electrode regulation, and off-gas system. Furthermore the solid phase is not treated to be homogenous but a simple spatial discretization is employed. Hence it is possible to simulate the energy input by electric arcs and fossil fuel burners depending on the state of the melting progress. The model is implemented in object-oriented, equation-based language Modelica. The simulation results are compared to literature data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

Re:

Reynolds number

Pr:

Prandtl number

Nu:

Nusselt number

ε :

Porosity

η :

Efficiency

ρ :

Density (kg m−3)

A :

Area (m2)

b :

Fitting factor for stack effect

c p , c v :

Specific heat capacity (J kg−1 K−1)

d, D :

Diameter (m)

E a :

Voltage drop (V mm−1)

f a :

Packing factor

g :

Acceleration due to gravity (m s−2)

h :

Specific enthalpy (J kg−1)

h :

Coefficient of heat transfer (W m−2 K−1)

h fusion :

Heat of fusion (J kg−1)

H :

Height (m)

Hi :

Lower heating value (J kg−1)

I :

Current (A)

I, J, K :

Number of elements in φ, r, z direction

k :

Minor pressure loss coefficient

m :

Mass (kg)

\( \dot{m} \) :

Mass flow rate (kg s−1)

φ, r, z :

Coordinates of solid-phase discretization

P :

Effective power (W)

P C :

Copper losses (W)

\( \dot{Q} \) :

Heat flow rate (W)

r :

Radius (m)

R :

Resistance (Ω)

s :

Distance (m)

S :

Apparent power (VA)

t :

Time (s)

T :

Temperature (K)

u sc :

Relative short-circuit voltage (pct)

U :

Voltage (V)

U an :

Anode drop (V)

V :

Volume (m3)

\( \dot{V} \) :

Volume flow rate (kg m−3)

w :

Velocity (m s−1)

x :

Share

X :

Reactance (Ω)

Y :

Admittance (Ω−1)

\( \underline{Z} \) :

Complex variables

0:

Reference value

a:

Arc

amb:

Ambient

b:

Burner

bb:

Busbar

bl:

Blower

cr:

Controlled reactance

e:

Solid element

eaft:

Furnace transformer

el:

Electrode

f:

Furnace

fe:

Furnace equipment

fc:

Filter capacitor

fr:

Flow resistance

g:

Gas phase

hc:

High-current system

l:

Liquid phase

lf:

Ladle furnace

liq:

Quantity at liquidus point

r:

Rated

rea:

Reactor

s:

Solid phase

sdt:

Step-down transformer

sol:

Quantity at solidus point

v:

Vessel

w:

Wall

CFD:

Computational fluid dynamics

lam:

Laminar

PCC:

Point of common coupling

SVC:

Static VAR compensation

turb:

Turbulent

References

  1. World Steel Association: Steel Statistical Yearbook, Brussels, 2014.

  2. M. Kirschen, V. Risonarta, and H. Pfeifer: Energy, 2009, vol. 34, pp. 1065–1072, doi: 10.1016/j.energy.2009.04.015.

    Article  Google Scholar 

  3. [3] J. Szekely and G. Trapaga: Metall. Plant Technol. Int., 1994, vol. 4, pp. 30–47.

    Google Scholar 

  4. [4] S. Köhle: Stahl Eisen, 1992, vol. 112, pp. 59–67.

    Google Scholar 

  5. [5] B. Kleimt and S. Köhle: Metall. Plant Technol. Int., 1997, vol. 9, 56–57.

    Google Scholar 

  6. S. Köhle, In: 57th Electric Furnace Conference Proceedings, Pittsburgh, PA, 1999, pp. 3–14.

  7. S. Köhle, In: 7th European Electric Steelmaking Conference Proceedings, Venice, Italy, 2002, pp. 305–14.

  8. S.S. Baker, A.M.W. Briggs, P.J. Lewis, D. Capodilupo, E. Repetto, S. Gonthier, Y. Zbaczyniak, B. Kleimt, S. Köhle, M. Knoop, G. Mosel, and P.G. Oberhäuser: Ecological and economical EAF steelmaking, EUR 19480. European Commission - Directorate-General for Research, Luxembourg, 2001.

  9. [9] W. Adams, S. Alameddine, B. Bowman, N. Lugo, S. Paege, and P. Stafford: Metall. Plant Technol. Int., 2002, vol. 14, pp. 44–50.

    Google Scholar 

  10. H. Pfeifer and M. Kirschen, In: 7th European Electric Steelmaking Conference Proceedings, Venice, Italy, 2002, pp. 413–28.

  11. A. Cameron, N. Saxena, and K. Broome, In: 56th Electric Furnace Conference Proceedings, New Orleans, LA, 1998, pp. 689–96.

  12. [12] J. G. Bekker, I. K. Craig, and P. C. Pistorius: ISIJ Int., 1999, vol. 39, pp. 23–32, doi: 10.2355/isijinternational.39.23.

    Article  Google Scholar 

  13. [13] R. D. Morales, H. Rodríguez-Hernández, and A. N. Conejo: ISIJ Int., 2001, vol. 41, pp. 426–435, doi: 10.2355/isijinternational.41.426.

    Article  Google Scholar 

  14. [14] R. D. M. MacRosty and C. L. E. Swartz: Ind. Eng. Chem. Res., 2005, vol. 44, pp. 8067–8083, doi: 10.1021/ie050101b.

    Article  Google Scholar 

  15. [15] V. Logar, D. Dovžan, and I. Škrjanc: ISIJ Int., 2011, vol. 51, pp. 382–391, doi: 10.2355/isijinternational.51.382.

    Article  Google Scholar 

  16. [16] V. Logar, D. Dovžan, and I. Škrjanc: ISIJ Int., 2012, vol. 52, pp. 402–412, DOI:10.2355/isijinternational.52.402.

    Article  Google Scholar 

  17. [17] B. Bowman and K. Krüger: Arc Furnace Physics, Verlag Stahleisen, Düsseldorf, 2009.

    Google Scholar 

  18. [18] V. Crastan: Elektrische Energieversorgung 1, 1st ed., Springer, Berlin, 2000.

    Book  Google Scholar 

  19. [19] K. Krüger: Modellbildung und Regelung der elektrothermischen Energieumsetzung von Lichtbogenöfen, VDI Verlag, Düsseldorf, 1998.

    Google Scholar 

  20. [20] B. Schwarz: Regelung elektrischer Größen an Drehstrom-Lichtbogenöfen, Universität der Bundeswehr, Hamburg, 1988.

    Google Scholar 

  21. [21] J. Celada: Trans. Iron Steel Soc., 1992, vol. 13, pp. 17–24.

    Google Scholar 

  22. [22] B. Bowman: Metallurgia Int., 1988, vol. 1, pp. 286–291.

    Google Scholar 

  23. [23] R. W. Lewis and K. Ravindran: Int. J. Numer. Meth. Eng., 2000, vol. 47, pp. 29–59, DOI:10.1002/(SICI)1097-0207(20000110/30)47:1/3<29::AID-NME760>3.0.CO;2-X.

    Article  Google Scholar 

  24. [24] S. Argyropoulos, A. Mikrovas, and D. Doutre: Metall. Mater. Trans. B, 2001, vol. 32, pp. 239–246, doi: 10.1007/s11663-001-0047-1.

    Article  Google Scholar 

  25. [25] S. Sideman: Ind. Eng. Chem. Res., 1966, vol. 58, pp. 54–58.

    Article  Google Scholar 

  26. [26] O. J. P. Gonzales, M. A. Ramírez-Argáez, and A. N. Conejo: ISIJ Int., 2010, vol. 50, pp. 1–8, doi: 10.2355/isijinternational.50.1.

    Article  Google Scholar 

  27. [27] F. Opitz and P. Treffinger: Appl. Therm. Eng., 2014, vol. 73, pp. 243–250, doi: 10.1016/j.applthermaleng.2014.07.057.

    Article  Google Scholar 

  28. V. Gnielinski, In: VDI Heat Atlas, VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (GVC), ed., 2010, pp. 743–44.

  29. [29] Y. Wu and M. Lacroix: Numer. Heat Transfer, Part A, 1993, vol. 24, pp. 413–425, doi: 10.1080/10407789308902632.

    Article  Google Scholar 

  30. [30] W. Bohl and W. Elmendorf: Technische Strömungslehre, 14th ed., Vogel, Würzburg, 2008.

    Google Scholar 

  31. J.A.T. Jones, B. Bowman, and P.A. Lefrank, In: The Making, Shaping and Treating of Steel, Fruehan, R. J., ed., 1998, pp. 525–660.

  32. G. Jordan, A. T. Sheridan, R. W. Montgomery, and M. Danby: Basic properties of high intensity electric arcs used in steelmaking, Steel research report 6210.93/8/801. Commission of the European Communities, 1976.

  33. [33] D. Ameling, M. Sittard, W. Ullrich, and J. Wolf: Stahl Eisen, 1986, vol. 106, pp. 625–630.

    Google Scholar 

  34. [34] S. Köhle, M. Knoop, and R. Lichterbeck: Elektrowaerme Int., 1993, vol. 51, pp. 175–185.

    Google Scholar 

Download references

Acknowledgments

This research project is funded by the German Federal Ministry of Education and Research (BMBF) within the framework concept ‘IngenieurNachwuchs’ (Fund Number 03FH00212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Opitz.

Additional information

Manuscript submitted October 5, 2015

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Opitz, F., Treffinger, P. Physics-Based Modeling of Electric Operation, Heat Transfer, and Scrap Melting in an AC Electric Arc Furnace. Metall Mater Trans B 47, 1489–1503 (2016). https://doi.org/10.1007/s11663-015-0573-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0573-x

Keywords

Navigation