Skip to main content
Log in

Bi-directional Evolutionary Structural Optimization on Advanced Structures and Materials: A Comprehensive Review

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

The evolutionary structural optimization (ESO) method developed by Xie and Steven (Comput Struct 49(5):885–896, 162), an important branch of topology optimization, has undergone tremendous development over the past decades. Among all its variants, the convergent and mesh-independent bi-directional evolutionary structural optimization (BESO) method developed by Huang and Xie (Finite Elem Anal Des 43(14):1039–1049, 48) allowing both material removal and addition, has become a widely adopted design methodology for both academic research and engineering applications because of its efficiency and robustness. This paper intends to present a comprehensive review on the development of ESO-type methods, in particular the latest convergent and mesh-independent BESO method is highlighted. Recent applications of the BESO method to the design of advanced structures and materials are summarized. Compact Malab codes using the BESO method for benchmark structural and material microstructural designs are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62
Fig. 63

Similar content being viewed by others

References

  1. Allaire G, Jouve F, Toader AM (2002) A level-set method for shape optimization. CR Math 334(12):1125–1130

    MathSciNet  MATH  Google Scholar 

  2. Andreassen E, Jensen J (2014) Topology optimization of periodic microstructures for enhanced dynamic properties of viscoelastic composite materials. Struct Multidiscip Optim 49(5):695–705

    Article  MathSciNet  Google Scholar 

  3. Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2011) Efficient topology optimization in matlab using 88 lines of code. Struct Multidiscip Optim 43(1):1–16

    Article  MATH  Google Scholar 

  4. Ansola R, Canales J, Tárrago JA (2006) An efficient sensitivity computation strategy for the evolutionary structural optimization (ESO) of continuum structures subjected to self-weight loads. Finite Elem Anal Des 42(14):1220–1230

    Article  Google Scholar 

  5. Barbero EJ (2010) Introduction to composite materials design. CRC Press, Boca Raton

    Google Scholar 

  6. Bendsøe M, Sigmund O (1999a) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):635–654

    MATH  Google Scholar 

  7. Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202

    Article  Google Scholar 

  8. Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MathSciNet  MATH  Google Scholar 

  9. Bendsøe MP, Sigmund O (1999b) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654

    Article  MATH  Google Scholar 

  10. Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, Berlin

    MATH  Google Scholar 

  11. Bourdin B, Chambolle A (2003) Design-dependent loads in topology optimization. ESAIM Control Optim Calc Var 9:19–48

    Article  MathSciNet  MATH  Google Scholar 

  12. Bruns T, Tortorelli D (2003) An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms. Int J Numer Methods Eng 57(10):1413–1430

    Article  MATH  Google Scholar 

  13. Cadman J, Zhou S, Chen Y, Li Q (2013) On design of multi-functional microstructural materials. J Mater Sci 48(1):51–66

    Article  Google Scholar 

  14. Challis VJ, Roberts AP, Wilkins AH (2008) Design of three dimensional isotropic microstructures for maximized stiffness and conductivity. Int J Solids Struct 45(14–15):4130–4146

    Article  MATH  Google Scholar 

  15. Challis VJ, Guest JK, Grotowski JF, Roberts AP (2012) Computationally generated cross-property bounds for stiffness and fluid permeability using topology optimization. Int J Solids Struct 49(23–24):3397–3408

    Article  Google Scholar 

  16. Chen W, Liu S (2014) Topology optimization of microstructures of viscoelastic damping materials for a prescribed shear modulus. Struct Multidiscip Optim 50(2):287–296

    Article  MathSciNet  Google Scholar 

  17. Cheng K, Olhoff N (1981) An investigation concerning optimal design of solid elastic plates. Int J Solids Struct 17(3):305–323

    Article  MathSciNet  MATH  Google Scholar 

  18. Chiandussi G (2006) On the solution of a minimum compliance topology optimisation problem by optimality criteria without a priori volume constraint specification. Comput Mech 38(1):77–S99

    Article  MATH  Google Scholar 

  19. Cho S, Jung HS (2003) Design sensitivity analysis and topology optimization of displacement-loaded non-linear structures. Comput Methods Appl Mech Eng 192(22–23):2539–2553

    Article  MATH  Google Scholar 

  20. Chu DN, Xie YM, Hira A, Steven GP (1996) Evolutionary structural optimization for problems with stiffness constraints. Finite Elem Anal Des 21(4):239–251

    Article  MATH  Google Scholar 

  21. Coenen EWC, Kouznetsova VG, Geers MGD (2012) Multi-scale continuous–discontinuous framework for computational-homogenization-localization. J Mech Phys Solids 60(8):1486–1507

    Article  MathSciNet  Google Scholar 

  22. Da D, Cui X, Long K, Li G (2016) Concurrent topological design of composite structures and the underlying multi-phase materials. Comput Struct. doi:10.1016/j.compstruc.2016.10.006

  23. Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38

    Article  MathSciNet  Google Scholar 

  24. Du J, Olhoff N (2007) Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Struct Multidiscip Optim 34(2):91–110

    Article  MathSciNet  MATH  Google Scholar 

  25. Duysinx P, Bendsøe MP (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43(8):1453–1478

    Article  MathSciNet  MATH  Google Scholar 

  26. Edwards C, Kim H, Budd C (2007) An evaluative study on ESO and SIMP for optimising a cantilever tie-beam. Struct Multidiscip Optim 34(5):403–414

    Article  Google Scholar 

  27. Eschenauer H, Kobelev V, Schumacher A (1994) Bubble method for topology and shape optimization of structures. Struct Optim 8(1):42–51

    Article  Google Scholar 

  28. Feyel F, Chaboche J (2000) \(\text{ FE }^{2}\) multiscale approach for modelling the elastoviscoplastic behaviour of long fibre sic/ti composite materials. Comput Methods Appl Mech Eng 183(3–4):309–330

    Article  MATH  Google Scholar 

  29. Fleming J, Lin S, El-Kady I, Biswas R, Ho K (2002) All-metallic three-dimensional photonic crystals with a large infrared bandgap. Nature 417(6884):52–55

    Article  Google Scholar 

  30. Fritzen F, Hodapp M (2016) The finite element square reduced (fe2R) method with gpu acceleration: towards three-dimensional two-scale simulations. Int J Numer Methods Eng. doi:10.1002/nme.5188

  31. Fritzen F, Leuschner M (2013) Reduced basis hybrid computational homogenization based on a mixed incremental formulation. Comput Methods Appl Mech Eng 260:143–154

    Article  MathSciNet  MATH  Google Scholar 

  32. Fritzen F, Hodapp M, Leuschner M (2014) Gpu accelerated computational homogenization based on a variational approach in a reduced basis framework. Comput Methods Appl Mech Eng 278:186–217

    Article  MathSciNet  Google Scholar 

  33. Fritzen F, Xia L, Leuschner M, Breitkopf P (2016) Topology optimization of multiscale elastoviscoplastic structures. Int J Numer Methods Eng. doi:10.1002/nme.5122

  34. Fujii D, Chen BC, Kikuchi N (2001) Composite material design of two-dimensional structures using the homogenization design method. Int J Numer Methods Eng 50(9):2031–2051

    Article  MathSciNet  MATH  Google Scholar 

  35. Fullwood DT, Niezgoda SR, Adams BL, Kalidindi SR (2010) Microstructure sensitive design for performance optimization. Prog Mater Sci 55(6):477–562

    Article  Google Scholar 

  36. Geers MGD, Kouznetsova VG, Brekelmans WAM (2010) Multi-scale computational homogenization: trends and challenges. J Comput Appl Math 234(7):2175–2182

    Article  MATH  Google Scholar 

  37. Ghabraie K (2015) An improved soft-kill BESO algorithm for optimal distribution of single or multiple material phases. Struct Multidiscipl Optim 52(4):773–790

    Article  MathSciNet  Google Scholar 

  38. Ghabraie K, Xie YM, Huang X, Ren G (2010) Shape and reinforcement optimization of underground tunnels. J Comput Sci Technol 4(1):51–63

    Article  Google Scholar 

  39. Gibiansky L, Sigmund O (2000) Multiphase composites with extremal bulk modulus. J Mech Phys Solids 48(3):461–498

    Article  MathSciNet  MATH  Google Scholar 

  40. Guedes J, Kikuchi N (1990) Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Comput Methods Appl Mech Eng 83(2):143–198

    Article  MathSciNet  MATH  Google Scholar 

  41. Guest JK, Prévost JH (2006) Optimizing multifunctional materials: Design of microstructures for maximized stiffness and fluid permeability. Int J Solids Struct 43(22–23):7028–7047

    Article  MATH  Google Scholar 

  42. Guest JK, Prévost JH (2007) Design of maximum permeability material structures. Comput Methods Appl Mech Eng 196(4–6):1006–1017

    Article  MathSciNet  MATH  Google Scholar 

  43. Hashin Z (1983) Analysis of composite materials: a survey. J Appl Mech 50(3):481–505

    Article  MATH  Google Scholar 

  44. Hashin Z, Shtrikman S (1962) A variational approach to the theory of the effective magnetic permeability of multiphase materials. J Appl Phys 33(10):3125–3131

    Article  MATH  Google Scholar 

  45. Hassani B, Hinton E (1998b) A review of homogenization and topology opimization II: analytical and numerical solution of homogenization equations. Comput Struct 69(6):719–738

    Article  Google Scholar 

  46. Hinton E, Sienz J (1995) Fully stressed topological design of structures using an evolutionary procedure. Eng Comput 12(3):229–244

    Article  MATH  Google Scholar 

  47. Huang X, Xie YM (2007a) Bidirectional evolutionary topology optimization for structures with geometrical and material nonlinearities. AIAA J 45(1):308–313

    Article  Google Scholar 

  48. Huang X, Xie YM (2007b) Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elem Anal Des 43(14):1039–1049

    Article  Google Scholar 

  49. Huang X, Xie YM (2008a) A new look at ESO and BESO optimization methods. Struct Multidiscip Optim 35(1):89–92

    Article  Google Scholar 

  50. Huang X, Xie YM (2008b) Optimal design of periodic structures using evolutionary topology optimization. Struct Multidiscip Optim 36(6):597–606

    Article  Google Scholar 

  51. Huang X, Xie YM (2008c) Optimal design of periodic structures using evolutionary topology optimization. Struct Multidiscip Optim 36(6):597–606

    Article  Google Scholar 

  52. Huang X, Xie YM (2008d) Topology optimization of nonlinear structures under displacement loading. Eng Struct 30(7):2057–2068

    Article  Google Scholar 

  53. Huang X, Xie YM (2009) Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials. Comput Mech 43(3):393–401

    Article  MathSciNet  MATH  Google Scholar 

  54. Huang X, Xie YM (2010a) Evolutionary topology optimization of continuum structures with an additional displacement constraint. Struct Multidiscip Optim 40(1–6):409–416

    Article  MathSciNet  MATH  Google Scholar 

  55. Huang X, Xie YM (2010b) A further review of ESO type methods for topology optimization. Struct Multidiscip Optim 41(5):671–683

    Article  Google Scholar 

  56. Huang X, Xie YM (2010c) Topology optimization of continuum structures: methods and applications. Wiley, Chichester

    Book  MATH  Google Scholar 

  57. Huang X, Xie YM (2011) Evolutionary topology optimization of continuum structures including design-dependent self-weight loads. Finite Elem Anal Des 47(8):942–948

    Article  Google Scholar 

  58. Huang X, Xie YM, Lu G (2007) Topology optimization of energy-absorbing structures. Int J Crashworthiness 12(6):663–675

    Article  Google Scholar 

  59. Huang X, Zuo Z, Xie YM (2010) Evolutionary topological optimization of vibrating continuum structures for natural frequencies. Comput Struct 88(5):357–364

    Article  Google Scholar 

  60. Huang X, Radman A, Xie YM (2011) Topological design of microstructures of cellular materials for maximum bulk or shear modulus. Comput Mater Sci 50(6):1861–1870

    Article  Google Scholar 

  61. Huang X, Xie YM, Jia B, Li Q, Zhou SW (2012) Evolutionary topology optimization of periodic composites for extremal magnetic permeability and electrical permittivity. Struct Multidiscip Optim 46(3):385–398

    Article  MathSciNet  MATH  Google Scholar 

  62. Huang X, Zhou SW, Xie YM, Li Q (2013) Topology optimization of microstructures of cellular materials and composites for macrostructures. Comput Mater Sci 67:397–407

    Article  Google Scholar 

  63. Huang X, Li Y, Zhou S, Xie YM (2014) Topology optimization of compliant mechanisms with desired structural stiffness. Eng Struct 79:13–21

    Article  Google Scholar 

  64. Huang X, Zhou S, Sun G, Li G, Xie YM (2015) Topology optimization for microstructures of viscoelastic composite materials. Comput Methods Appl Mech Eng 283:503–516

    Article  Google Scholar 

  65. Joannopoulos J, Johnson S, Winn J, Meade R (2011) Photonic crystals: molding the flow of light. Princeton University Press, Princeton

    MATH  Google Scholar 

  66. Kato J, Yachi D, Terada K, Kyoya T (2014) Topology optimization of micro-structure for composites applying a decoupling multi-scale analysis. Struct Multidiscip Optim 49(4):595–608

    Article  MathSciNet  Google Scholar 

  67. Kim H, Garcia M, Querin O, Steven GP, Xie YM (2000a) Introduction of fixed grid in evolutionary structural optimisation. Eng Comput 17(4):427–439

    Article  MATH  Google Scholar 

  68. Kim H, Querin O, Steven GP, Xie YM (2000b) A method for varying the number of cavities in an optimized topology using evolutionary structural optimization. Struct Multidiscip Optim 19(2):140–147

    Article  Google Scholar 

  69. Kim H, Querin O, Steven GP, Xie YM (2002a) Improving efficiency of evolutionary structural optimization by implementing fixed grid mesh. Struct Multidiscip Optim 24(6):441–448

    Article  Google Scholar 

  70. Kim H, Querin OM, Steven GP, Xie YM (2002b) Determination of an optimal topology with a predefined number of cavities. AIAA J 40(4):739–744

    Article  Google Scholar 

  71. Kohn R, Strang G (1986a) Optimal design and relaxation of variational problems (part I). Commun Pure Appl Math 39(1):113–137

    Article  MATH  Google Scholar 

  72. Kohn R, Strang G (1986b) Optimal design and relaxation of variational problems (part I). Commun Pure Appl Math 39(2):139–182

    Article  MATH  Google Scholar 

  73. Kohn R, Strang G (1986c) Optimal design and relaxation of variational problems (part I). Commun Pure Appl Math 39(3):353–377

    Article  MATH  Google Scholar 

  74. Le B, Yvonnet J, He QC (2015) Computational homogenization of nonlinear elastic materials using neural networks. Int J Numer Methods Eng 104(12):1061–1084

    Article  MathSciNet  MATH  Google Scholar 

  75. Le C, Norato J, Bruns T, Ha C, Tortorelli D (2010) Stress-based topology optimization for continua. Struct Multidiscip Optim 41(4):605–620

    Article  Google Scholar 

  76. Li Q, Steven GP, Xie YM (1999) On equivalence between stress criterion and stiffness criterion in evolutionary structural optimization. Struct Optim 18(1):67–73

    Article  Google Scholar 

  77. Li Q, Steven G, Xie YM (2001) A simple checkerboard suppression algorithm for evolutionary structural optimization. Struct Multidiscip Optim 22(3):230–239

    Article  Google Scholar 

  78. Li Q, Steven GP, Xie YM, Querin OM (2004) Evolutionary topology optimization for temperature reduction of heat conducting fields. Int J Heat Mass Transf 47(23):5071–5083

    Article  MATH  Google Scholar 

  79. Li Y, Huang X, Meng F, Zhou S (2016a) Evolutionary topological design for phononic band gap crystals. Struct Multidiscip Optim 54(3):595–617

    Article  MathSciNet  Google Scholar 

  80. Li Y, Huang X, Zhou S (2016b) Topological design of cellular phononic band gap crystals. Materials 9(3):186–208

    Article  Google Scholar 

  81. Liu Q, Chan R, Huang X (2016) Concurrent topology optimization of macrostructures and material microstructures for natural frequency. Mater Des 106:380–390

    Article  Google Scholar 

  82. Liu Y, Jin F, Li Q, Zhou S (2008) A fixed-grid bidirectional evolutionary structural optimization method and its applications in tunnelling engineering. Int J Numer Methods Eng 73(12):1788–1810

    Article  MATH  Google Scholar 

  83. Lu M, Feng L, Chen Y (2009) Phononic crystals and acoustic metamaterials. Mater Today 12(12):34–42

    Article  Google Scholar 

  84. Luo Z, Wang M, Wang S, Wei P (2008) A level set-based parameterization method for structural shape and topology optimization. Int J Numer Methods Eng 76(1):1–26

    Article  MathSciNet  MATH  Google Scholar 

  85. Manickarajah D, Xie YM, Steven GP (1998) An evolutionary method for optimization of plate buckling resistance. Finite Elem Anal Des 29(3):205–230

    Article  MATH  Google Scholar 

  86. Maute K, Schwarz S, Ramm E (1998) Adaptive topology optimization of elastoplastic structures. Struct Optim 15(2):81–91

    Article  Google Scholar 

  87. McKeown JJ (1997) A note on the equivalence between maximum stiffness and maximum strength trusses. Eng Optim 29(1–4):443–456

    Article  Google Scholar 

  88. Meng F, Huang X, Jia B (2015) Bi-directional evolutionary optimization for photonic band gap structures. J Comput Phys 302:393–404

    Article  MathSciNet  MATH  Google Scholar 

  89. Meng F, Li S, Lin H, Jia B, Huang X (2016) Topology optimization of photonic structures for all-angle negative refraction. Finite Elem Anal Des 117:46–56

    Article  MathSciNet  Google Scholar 

  90. Michel JC, Moulinec H, Suquet P (1999) Effective properties of composite materials with periodic microstructure: a computational approach. Comput Methods Appl Mech Eng 172(1–4):109–143

    Article  MathSciNet  MATH  Google Scholar 

  91. Michell AGM (1904) Lviii. the limits of economy of material in frame-structures. Lond Edinb Dublin Philos Mag J Sci 8(47):589–597

    Article  MATH  Google Scholar 

  92. Munk D, Vio G, Steven GP (2016) A simple alternative formulation for structural optimisation with dynamic and buckling objectives. Struct Multidiscip Optim. doi:10.1007/s00158-016-1544-9

  93. Neves MM, Rodrigues H, Guedes JM (2000) Optimal design of periodic linear elastic microstructures. Comput Struct 76(1):421–429

    Article  Google Scholar 

  94. Neves MM, Sigmund O, Bendsøe MP (2002) Topology optimization of periodic microstructures with a penalization of highly localized buckling modes. Int J Numer Methods Eng 54(6):809–834

    Article  MathSciNet  MATH  Google Scholar 

  95. Nguyen T, Ghabraie K, Tran-Cong T (2014) Applying bi-directional evolutionary structural optimisation method for tunnel reinforcement design considering nonlinear material behaviour. Comput Geotech 55:57–66

    Article  Google Scholar 

  96. Niu B, Yan J, Cheng G (2009) Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency. Struct Multidiscip Optim 39(2):115–132

    Article  Google Scholar 

  97. Norato JA, Bendsøe MP, Haber RB, Tortorelli DA (2007) A topological derivative method for topology optimization. Struct Multidiscip Optim 33(4–5):375–386

    Article  MathSciNet  MATH  Google Scholar 

  98. Pedersen N (2000) Maximization of eigenvalues using topology optimization. Struct Multidiscip Optim 20(1):2–11

    Article  Google Scholar 

  99. Pennec Y, Vasseur J, Djafari-Rouhani B, Dobrzyński L, Deymier P (2010) Two-dimensional phononic crystals: examples and applications. Surf Sci Rep 65(8):229–291

    Article  Google Scholar 

  100. Picelli R, Vicente W, Pavanello R (2015a) Bi-directional evolutionary structural optimization for design-dependent fluid pressure loading problems. Eng Optim 47(10):1324–1342

    Article  MathSciNet  Google Scholar 

  101. Picelli R, Vicente W, Pavanello R, Xie YM (2015b) Evolutionary topology optimization for natural frequency maximization problems considering acoustic–structure interaction. Finite Elem Anal Des 106:56–64

    Article  Google Scholar 

  102. Picelli R, van Dijk R, Vicente W, Pavanello R, Langelaar M, van Keulen F (2016) Topology optimization for submerged buoyant structures. Eng Optim. doi:10.1080/0305215X.2016.1164147

  103. Prager W, Rozvany G (1977) Optimal layout of grillages. J Struct Mech 5(1):1–18

    Article  Google Scholar 

  104. Proos K, Steven GP, Querin O, Xie YM (2001) Stiffness and inertia multicriteria evolutionary structural optimisation. Eng Comput 18(7):1031–1054

    Article  MATH  Google Scholar 

  105. Querin O, Steven GP, Xie YM (2000a) Evolutionary structural optimisation using an additive algorithm. Finite Elem Anal Des 34(3):291–308

    Article  MATH  Google Scholar 

  106. Querin OM (1997) Evolutionary structural optimisation: stress based formulation and implementation. Ph.D. thesis, Department of Aeronautical Engineering, University of Sydney, Australia

  107. Querin OM, Steven GP, Xie YM (1998) Evolutionary structural optimisation (ESO) using a bidirectional algorithm. Eng Comput 15(8):1031–1048

    Article  MATH  Google Scholar 

  108. Querin OM, Young V, Steven GP, Xie YM (2000b) Computational efficiency and validation of bi-directional evolutionary structural optimization. Comput Methods Appl Mech Eng 189(2):559–573

    Article  MATH  Google Scholar 

  109. Radman A, Huang X, Xie YM (2013a) Topological optimization for the design of microstructures of isotropic cellular materials. Eng Optim 45(11):1331–1348

    Article  MathSciNet  Google Scholar 

  110. Radman A, Huang X, Xie YM (2013b) Topology optimization of functionally graded cellular materials. J Mater Sci 48(4):1503–1510

    Article  Google Scholar 

  111. Radman A, Huang X, Xie YM (2014a) Maximizing stiffness of functionally graded materials with prescribed variation of thermal conductivity. Comput Mater Sci 82:457–463

    Article  Google Scholar 

  112. Radman A, Huang X, Xie YM (2014b) Topological design of microstructures of multi-phase materials for maximum stiffness or thermal conductivity. Comput Mater Sci 91:266–273

    Article  Google Scholar 

  113. Ren G, Smith J, Tang J, Xie YM (2005) Underground excavation shape optimization using an evolutionary procedure. Comput Geotech 32(2):122–132

    Article  Google Scholar 

  114. Ren G, Zuo Z, Xie YM, Smith J (2014) Underground excavation shape optimization considering material nonlinearities. Comput Geotech 58:81–87

    Article  Google Scholar 

  115. Rietz A (2001) Sufficiency of a finite exponent in simp (power law) methods. Struct Multidiscip Optim 21(2):159–163

    Article  Google Scholar 

  116. Rozvany G (1972a) Grillages of maximum strength and maximum stiffness. Int J Mech Sci 14(10):651–666

    Article  Google Scholar 

  117. Rozvany G (1972b) Optimal load transmission by flexure. Comput Methods Appl Mech Eng 1(3):253–263

    Article  Google Scholar 

  118. Rozvany G, Zhou M, Sigmund O (1994) Optimization of topology. In: Adeli H (ed) Advances in design optimization. Chapman & Hall, London, pp 340–399

    Google Scholar 

  119. Rozvany GI, Querin OM (2002) Combining ESO with rigorous optimality criteria. Int J Veh Des 28(4):294–299

    Article  Google Scholar 

  120. Rozvany GIN (2009) A critical review of established methods of structural topology optimization. Struct Multidiscip Optim 37(3):217–237

    Article  MathSciNet  MATH  Google Scholar 

  121. Schwarz S, Maute K, Ramm E (2001) Topology and shape optimization for elastoplastic structural response. Comput Methods Appl Mech Eng 190(15–17):2135–2155

    Article  MATH  Google Scholar 

  122. Sethian JA, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163(2):489–528

    Article  MathSciNet  MATH  Google Scholar 

  123. Sigmund O (1994) Materials with prescribed constitutive parameters: an inverse homogenization problem. Int J Solids Struct 31(17):2313–2329

    Article  MathSciNet  MATH  Google Scholar 

  124. Sigmund O (1997) On the design of compliant mechanisms using topology optimization. J Struct Mech 25(4):493–524

    Google Scholar 

  125. Sigmund O (2000) New class of extremal composites. J Mech Phys Solids 48(2):397–428

    Article  MathSciNet  MATH  Google Scholar 

  126. Sigmund O (2001) A 99 line topology optimization code written in matlab. Struct Multidiscip Optim 21(2):120–127

    Article  Google Scholar 

  127. Sigmund O, Maute K (2013) Topology optimization approaches: a comparative review. Struct Multidiscip Optim 48(6):1031–1055

    Article  MathSciNet  Google Scholar 

  128. Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16(1):68–75

    Article  Google Scholar 

  129. Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45(6):1037–1067

    Article  MathSciNet  Google Scholar 

  130. Sokolowski J, Zochowski A (1999) On the topological derivative in shape optimization. SIAM J Control Optim 37(4):1251–1272

    Article  MathSciNet  MATH  Google Scholar 

  131. Steven GP, Li Q, Xie YM (2000) Evolutionary topology and shape design for general physical field problems. Comput Mech 26(2):129–139

    Article  MATH  Google Scholar 

  132. Stolpe M, Svanberg K (2001a) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidiscip Optim 22(2):116–124

    Article  Google Scholar 

  133. Stolpe M, Svanberg K (2001b) On the trajectories of penalization methods for topology optimization. Struct Multidiscip Optim 21(2):128–139

    Article  Google Scholar 

  134. Su W, Liu S (2010) Size-dependent optimal microstructure design based on couple-stress theory. Struct Multidiscip Optim 42(2):243–254

    Article  Google Scholar 

  135. Tanskanen P (2002) The evolutionary structural optimization method: theoretical aspects. Comput Methods Appl Mech Eng 191(47–48):5485–5498

    Article  MATH  Google Scholar 

  136. Theocaris PS, Stavroulaki GE (1999) Optimal material design in composites: an iterative approach based on homogenized cells. Comput Methods Appl Mech Eng 169(1–2):31–42

    Article  MATH  Google Scholar 

  137. Van Dijk N, Maute K, Langelaar M, Van Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim 48(3):437–472

    Article  MathSciNet  Google Scholar 

  138. Vicente W, Picelli R, Pavanello R, Xie YM (2015) Topology optimization of frequency responses of fluid-structure interaction systems. Finite Elem Anal Des 98:1–13

    Article  Google Scholar 

  139. Vicente W, Zuo Z, Pavanello R, Calixto T, Picelli R, Xie YM (2016) Concurrent topology optimization for minimizing frequency responses of two-level hierarchical structures. Comput Methods Appl Mech Eng 301:116–136

    Article  MathSciNet  Google Scholar 

  140. Wadley H, Fleck N, Evans A (2003) Fabrication and structural performance of periodic cellular metal sandwich structures. Compos Sci Technol 63(16):2331–2343

    Article  Google Scholar 

  141. Wang F, Sigmund O, Jensen J (2014a) Design of materials with prescribed nonlinear properties. J Mech Phys Solids 69(1):156–174

    Article  MathSciNet  Google Scholar 

  142. Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246

    Article  MathSciNet  MATH  Google Scholar 

  143. Wang Y, Luo Z, Zhang N, Kang Z (2014b) Topological shape optimization of microstructural metamaterials using a level set method. Comput Mater Sci 87:178–186

    Article  Google Scholar 

  144. Xia L (2016) Multiscale structural topology optimization. Elsevier-ISTE, London

    Google Scholar 

  145. Xia L, Breitkopf P (2014a) Concurrent topology optimization design of material and structure within fe\(^{2}\) nonlinear multiscale analysis framework. Comput Methods Appl Mech Eng 278:524–542

    Article  MathSciNet  Google Scholar 

  146. Xia L, Breitkopf P (2014b) A reduced multiscale model for nonlinear structural topology optimization. Comput Methods Appl Mech Eng 280:117–134

    Article  MathSciNet  Google Scholar 

  147. Xia L, Breitkopf P (2015a) Design of of materials using topology optimization and energy-based homogenization approach in matlab. Struct Multidiscip Optim 52(6):1229–1241

    Article  MathSciNet  Google Scholar 

  148. Xia L, Breitkopf P (2015b) Multiscale structural topology optimization with an approximate constitutive model for local material microstructure. Comput Methods Appl Mech Eng 286:147–167

    Article  MathSciNet  Google Scholar 

  149. Xia L, Breitkopf P (2016) Recent advances on topology optimization of multiscale nonlinear structures. Arch Comput Methods Eng. doi:10.1007/s11831-016-9170-7

  150. Xia L, Raghavan B, Breitkopf P, Zhang W (2013) Numerical material representation using proper orthogonal decomposition and diffuse approximation. Appl Math Comput 224:450–462

    MathSciNet  MATH  Google Scholar 

  151. Xia L, Fritzen F, Breitkopf P (2016) Evolutionary topology optimization of elastoplastic structures. Struct Multidiscip Optim. doi:10.1007/s00158-016-1523-1

  152. Xia L, Raghavan B, Breitkopf P (2017) Towards surrogate modeling of material microstructures through the processing variables. Appl Math Comput 294:157–168

    MathSciNet  Google Scholar 

  153. Xia Q, Shi T (2016a) Optimization of structures with thin-layer functional device on its surface through a level set based multiple-type boundary method. Comput Methods Appl Mech Eng 311:56–70

    Article  MathSciNet  Google Scholar 

  154. Xia Q, Shi T (2016b) Topology optimization of compliant mechanism and its support through a level set method. Comput Methods Appl Mech Eng 305:359–375

    Article  MathSciNet  Google Scholar 

  155. Xia Q, Wang M, Wang S, Chen S (2006a) Semi-lagrange method for level-set-based structural topology and shape optimization. Struct Multidiscip Optim 31(6):419–429

    Article  MathSciNet  MATH  Google Scholar 

  156. Xia Q, Shi T, Wang M (2011) A level set based shape and topology optimization method for maximizing the simple or repeated first eigenvalue of structure vibration. Struct Multidiscip Optim 43(4):473–485

    Article  MathSciNet  MATH  Google Scholar 

  157. Xia Q, Shi T, Liu S, Wang M (2012) A level set solution to the stress-based structural shape and topology optimization. Comput Struct 90–91:55–64

    Article  Google Scholar 

  158. Xia Q, Wang M, Shi T (2014) A level set method for shape and topology optimization of both structure and support of continuum structures. Comput Methods Appl Mech Eng 272:340–353

    Article  MathSciNet  MATH  Google Scholar 

  159. Xia Z, Zhang Y, Ellyin F (2003) A unified periodical boundary conditions for representative volume elements of composites and applications. Int J Solids Struct 40(8):1907–1921

    Article  MATH  Google Scholar 

  160. Xia Z, Zhou C, Yong Q, Wang X (2006b) On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites. Int J Solids Struct 43(2):266–278

    Article  MathSciNet  MATH  Google Scholar 

  161. Xie YM, Steven GP (1992) Shape and layout optimization via an evolutionary procedure. In: Proceedings of the international conference on computational engineering science

  162. Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896

    Article  Google Scholar 

  163. Xie YM, Steven GP (1996) Evolutionary structural optimization for dynamic problems. Comput Struct 58(6):1067–1073

    Article  MATH  Google Scholar 

  164. Xie YM, Steven GP (1997) Evolutionary structural optimization. Springer, London

    Book  MATH  Google Scholar 

  165. Xie YM, Zuo ZH, Huang X, Rong JH (2012) Convergence of topological patterns of optimal periodic structures under multiple scales. Struct Multidiscip Optim 46(1):41–50

    Article  MATH  Google Scholar 

  166. Xie YM, Yang X, Shen J, Yan X, Ghaedizadeh A, Rong J, Huang X, Zhou S (2014) Designing orthotropic materials for negative or zero compressibility. Int J Solids Struct 51(23):4038–4051

    Article  Google Scholar 

  167. Xu B, Xie YM (2015) Concurrent design of composite macrostructure and cellular microstructure under random excitations. Compos Struct 123:65–77

    Article  Google Scholar 

  168. Xu B, Jiang J, Xie YM (2015b) Concurrent design of composite macrostructure and multi-phase material microstructure for minimum dynamic compliance. Compos Struct 128:221–233

    Article  Google Scholar 

  169. Xu B, Huang X, Xie YM (2016a) Two-scale dynamic optimal design of composite structures in the time domain using equivalent static loads. Compos Struct 142:335–345

    Article  Google Scholar 

  170. Xu B, Huang X, Zhou S, Xie YM (2016b) Concurrent topological design of composite thermoelastic macrostructure and microstructure with multi-phase material for maximum stiffness. Compos Struct 150:84–102

    Article  Google Scholar 

  171. Yan X, Huang X, Zha Y, Xie YM (2014) Concurrent topology optimization of structures and their composite microstructures. Comput Struct 133:103–110

    Article  Google Scholar 

  172. Yan X, Huang X, Sun G, Xie YM (2015) Two-scale optimal design of structures with thermal insulation materials. Compos Struct 120:358–365

    Article  Google Scholar 

  173. Yang X, Huang X, Rong J, Xie YM (2013) Design of 3D orthotropic materials with prescribed ratios for effective youngâĂŹs moduli. Comput Mater Sci 67:229–237

    Article  Google Scholar 

  174. Yang XY, Xie YM, Steven GP, Querin OM (1999a) Bidirectional evolutionary method for stiffness optimization. AIAA J 37(11):1483–1488

    Article  Google Scholar 

  175. Yang XY, Xie YM, Steven GP, Querin OM (1999b) Topology optimization for frequencies using an evolutionary method. J Struct Eng 125(12):1432–1438

    Article  Google Scholar 

  176. Yang XY, Xie YM, Liu JS, Parks GT, Clarkson PJ (2002) Perimeter control in the bidirectional evolutionary optimization method. Struct Multidiscip Optim 24(6):430–S440

    Article  Google Scholar 

  177. Yang XY, Xie YM, Steven GP (2005) Evolutionary methods for topology optimisation of continuous structures with design dependent loads. Comput Struct 83(12):956–963

    Article  Google Scholar 

  178. Yi YM, Park SH, Youn SK (2000) Design of microstructures of viscoelastic composites for optimal damping characteristics. Int J Solids Struct 37(35):4791–4810

    Article  MATH  Google Scholar 

  179. Yoon G, Kim Y (2007) Topology optimization of material-nonlinear continuum structures by the element connectivity parameterization. Int J Numer Methods Eng 69(10):2196–2218

    Article  MathSciNet  MATH  Google Scholar 

  180. Young V, Querin OM, Steven GP, Xie YM (1999) 3D and multiple load case bi-directional evolutionary structural optimization (BESO). Struct Optim 18(2–3):183–192

    Article  Google Scholar 

  181. Yvonnet J, Gonzalez D, He QC (2009) Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials. Comput Methods Appl Mech Eng 198(33–36):2723–2737

    Article  MATH  Google Scholar 

  182. Yvonnet J, Monteiro E, He QC (2013) Computational homogenization method and reduced database model for hyperelastic heterogeneous structures. Int J Multiscale Comput Eng 11(3):201–225

    Article  Google Scholar 

  183. Zhou M, Rozvany G (2001) On the validity of ESO type methods in topology optimization. Struct Multidiscip Optim 21(1):80–83

    Article  Google Scholar 

  184. Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):309–336

    Article  Google Scholar 

  185. Zhou S, Cadman J, Chen Y, Li W, Xie YM, Huang X, Appleyard R, Sun G, Li Q (2012) Design and fabrication of biphasic cellular materials with transport properties-a modified bidirectional evolutionary structural optimization procedure and matlab program. Int J Heat Mass Transf 55(25):8149–8162

    Article  Google Scholar 

  186. Zhu J, Zhang W, Qiu K (2007) Bi-directional evolutionary topology optimization using element replaceable method. Comput Mech 40(1):97–109

    Article  MATH  Google Scholar 

  187. Zhu J, Zhang W, Xia L (2015) Topology optimization in aircraft and aerospace structures design. Arch Comput Methods Eng. doi:10.1007/s11831-015-9151-2

  188. Zuo Z, Huang X, Rong J, Xie YM (2013a) Multi-scale design of composite materials and structures for maximum natural frequencies. Mater Des 51:1023–1034

    Article  Google Scholar 

  189. Zuo ZH, Xie YM (2014) Evolutionary topology optimization of continuum structures with a global displacement control. Comput Aided Des 56:58–67

    Article  Google Scholar 

  190. Zuo ZH, Xie YM, Huang X (2010) An improved bi-directional evolutionary topology optimization method for frequencies. Int J Struct Stab Dyn 10(01):55–75

    Article  MathSciNet  MATH  Google Scholar 

  191. Zuo ZH, Xie YM, Huang X (2011) Reinventing the wheel. J Mech Des 133(2):024,502

    Article  Google Scholar 

  192. Zuo ZH, Huang X, Yang X, Rong JH, Xie YM (2013b) Comparing optimal material microstructures with optimal periodic structures. Comput Mater Sci 69:137–147

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11620101002, 51575203) and the Australian Research Council (DP160101400).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Xia or Qi Xia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed Consent

All the authors are informed and provided their consent.

Appendices

Appendix A: Matlab Code “esoL.m” Usisng the BESO Method for the Design of Structures

figure a

Appendix B: Matlab Code “esoX.m” Using the BESO Method for the Design of Material Microstructures

figure b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, L., Xia, Q., Huang, X. et al. Bi-directional Evolutionary Structural Optimization on Advanced Structures and Materials: A Comprehensive Review. Arch Computat Methods Eng 25, 437–478 (2018). https://doi.org/10.1007/s11831-016-9203-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-016-9203-2

Navigation