Skip to main content
Log in

A level set based shape and topology optimization method for maximizing the simple or repeated first eigenvalue of structure vibration

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

We present a level set based shape and topology optimization method for maximizing the simple or repeated first eigenvalue of structure vibration. Considering that a simple eigenvalue is Fréchet differentiable with respect to the boundary of a structure but a repeated eigenvalue is only Gateaux or directionally differentiable, we take different approaches to derive the boundary variation that maximizes the first eigenvalue. In the case of simple eigenvalue, material derivative is obtained via adjoint method, and variation of boundary shape is specified according to the steepest descent method. In the case of N-fold repeated eigenvalue, variation of boundary shape is obtained as a result of a N-dimensional algebraic eigenvalue problem. Constraint of a structure’s volume is dealt with via the augmented Lagrange multiplier method. Boundary variation is treated as an advection velocity in the Hamilton–Jacobi equation of the level set method for changing the shape and topology of a structure. The finite element analysis of eigenvalues of structure vibration is accomplished by using an Eulerian method that employs a fixed mesh and ersatz material. Application of the method is demonstrated by several numerical examples of optimizing 2D structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Allaire G, Jouve F (2005) A level-set method for vibration and multiple loads structural optimization. Comput Methods Appl Mech Eng 194:3269–3290

    Article  MATH  MathSciNet  Google Scholar 

  • Allaire G, Jouve F (2006) Coupling the level set method and the topological gradient in structural optimization. In: Bendsøe MP, Olhoff N, Sigmund O (eds) IUTAM symposium on topological design optimization of structures, machines and materials, vol 137, pp 3–12

  • Allaire G, Jouve F, Toader AM (2002) A level-set method for shape optimization. C R Acad Sci Paris Ser I 334:1–6

    MathSciNet  Google Scholar 

  • Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194:363–393

    Article  MATH  MathSciNet  Google Scholar 

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202

    Article  Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224

    Article  Google Scholar 

  • Burger M, Hackl B, Ring W (2004) Incorporating topological derivatives into level set methods. J Comput Phys 194:344–362

    Article  MATH  MathSciNet  Google Scholar 

  • Choi KK, Kim NH (2005) Structural sensitivity analysis and optimization. Springer

  • Diaz AR, Kikuchi N (1992) Solutions to shape and topology eigenvalue optimization problems using a homogenization method. Int J Numer Methods Eng 35:1487–1502

    Article  MATH  MathSciNet  Google Scholar 

  • Diaz AR, Lipton R, Soto CA (1994) A new formulation of the problem of optimum reinforcement of reissner-midlin plates. Comput Methods Appl Mech Eng 123:121–139

    Article  MathSciNet  Google Scholar 

  • Du JB, Olhoff N (2007) Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Struct Multidisc Optim 34:91–110

    Article  MathSciNet  Google Scholar 

  • Eschenauer HA, Kobelev HA, Schumacher A (1994) Bubble method for topology and shape optimization of structures. Struct Optim 8:142–151

    Article  Google Scholar 

  • Gournay FD (2006) Velocity extension for the level-set method and multiple eigenvalues in shape optimization. SIAM J Control Optim 45:343–367

    Article  MATH  MathSciNet  Google Scholar 

  • Haug EJ, Choi KK, Komkov V (1986) Design sensitivity analysis of structural systems. Academic Press, London

    MATH  Google Scholar 

  • Haug EJ, Rousselet B (1980) Design sensitivity analysis in structural mechanics. II. Eigenvalue variations. J Struct Mech 8:161–186

    MathSciNet  Google Scholar 

  • He L, Kao CY, Osher S (2007) Incorporating topological derivatives into shape derivative based level set methods. J Comput Phys 225:891–909

    Article  MATH  MathSciNet  Google Scholar 

  • Jensen JS, Pedersen NL (2006) On maximal eigenfrequency separation in two-material structures: the 1d and 2d scalar cases. J Sound Vib 289:967–986

    Article  Google Scholar 

  • Kosaka I, Swan CC (1999) A symmetry reduction method for continuum structural topology optimization. Comput Struct 70:47–61

    Article  MATH  MathSciNet  Google Scholar 

  • Krog LA, Olhoff N (1999) Optimum topology and reinforcement design of disk and plate structures with multiple stiffness and eigenfrequency objectives. Comput Struct 72:535–563

    Article  MATH  Google Scholar 

  • Ma ZD, Cheng HC, Kikuchi N (1994) Structural design for obtaining desired eigenfrequencies by using the topology and shape optimizationg method. Comput Syst Eng 5:77–89

    Article  Google Scholar 

  • Ma ZD, Kikuchi N, Cheng HC (1995) Topological design for vibrating structures. Comput Methods Appl Mech Eng 121:259–280

    Article  MATH  MathSciNet  Google Scholar 

  • Nocedal J, Wright SJ (1999) Numerical optimization. Springer

  • Olhoff N (1977) Maximizing higher order eigenfrequencies of beams with constraints on the design geometry. J Struct Mech 5:107–134

    Google Scholar 

  • Olhoff N, Rasmussen SH (1977) On single and bimodal optimum buckling loads of clamped columns. Int J Solids Struct 13:605–614

    Article  MATH  Google Scholar 

  • Osher S, Fedkiw R (2002) Level set methods and dynamic implicit surfaces. Springer-Verlag, New York

    Google Scholar 

  • Osher S, Santosa F (2001) Level-set methods for optimization problems involving geometry and constraints: frequencies of a two-density inhomogeneous drum. J Comput Phys 171:272–288

    Article  MATH  MathSciNet  Google Scholar 

  • Osher S, Sethian JA (1988) Front propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 78:12–49

    Article  MathSciNet  Google Scholar 

  • Pedersen NL (2000) Maximization of eigenvalue using topology optimization. Struct Multidisc Optim 20:2–11

    Article  Google Scholar 

  • Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge monographs on applied and computational mathematics, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Sethian JA, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163:489–528

    Article  MATH  MathSciNet  Google Scholar 

  • Seyranian AP, Lund E, Olhoff N (1994) Multiple eigenvalues in structural optimization problems. Struct Optim 8:207–227

    Article  Google Scholar 

  • Sokolowski J, Zochowski A (1999) On the topological derivative in shape optimization. SIAM J Control Optim 37:1251–1272

    Article  MATH  MathSciNet  Google Scholar 

  • Soto CA, Diaz AR (1993) Layout of plate structures for improved dynamic response using a homogenization method. Adv Des Autom 1:667–674

    Google Scholar 

  • Tcherniak D (2002) Topology optimization of resonating structures using simp method. Int J Numer Methods Eng 54:1605–1622

    Article  MATH  Google Scholar 

  • Wang MY, Wang XM, Guo DM (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246

    Article  MATH  Google Scholar 

  • Wang SY, Wang MY (2005) A moving superimposed finite element method for structural topology optimization. Int J Numer Methods Eng 65:1892–1922

    Article  Google Scholar 

  • Xia Q, Shi TL, Wang MY, Liu SY (2010) A level set based method for the optimization of cast part. Struct Multidisc Optim 41:735–747

    Article  Google Scholar 

  • Xia Q, Wang MY (2008) Topology optimization of thermoelastic structures using level set method. Comput Mech 42:837–857

    Article  MATH  Google Scholar 

  • Xie YM, Steven GP (1997) Evolutionary structural optimization. Springer-Verlag, London

    MATH  Google Scholar 

Download references

Acknowledgements

This research work is partly supported by the Special Fund for Basic Research Work in Central Universities of China(Grant No. Q2009009), the Natural Science Foundation of Hubei province (Grant No. 2009CDB321), and the National Natural Science Foundation of China (Grant No. 51075161), which the authors gratefully acknowledge. The insightful comments of the reviewers’ are cordially appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Xia.

Appendix A

Appendix A

For an N-fold repeated first eigenvalue, the linear combination, (29), of N linear independent eigenvectors is also an eigenvector

$$ \tilde{u}=\sum\limits_{j=1}^{N} \beta_{j}u_j $$
(29)

where β j are unknown coefficients to be determined.

Directly differentiating the weak form of the eigenvalue problem, we have

$$ a^\prime(u,v) = \lambda^\prime_1 b(u,v)+\lambda_1 b^\prime(u,v),\quad \forall v\in U \label{e:direct_diff} $$
(30)

Note that \(\lambda_1^\prime\) here denotes directional derivative. Substituting \(\tilde{u}\) and N linear independent eigenvectors u i into (30), we get

$$ a^\prime(\tilde{u},u_i) = \lambda^\prime_1 b(\tilde{u},u_i)+\lambda_1 b^\prime(\tilde{u},u_i),\quad i=1\ldots N $$
(31)

Substituting (29) into (31), and noting that u i , u j are mass-othonormalized, i.e., b(u i , u j ) = δ ij , we have

$$ \sum\limits_{j=1}^{N} \beta_{j}\left[\,a^\prime(u_i,u_j) \!-\! \lambda_1 b^\prime(u_i,u_j) \!-\! \lambda^\prime_1 \delta_{ij}\,\right]\!=\!0,\quad i\!=\!1\ldots N \label{e:linear_system_0} $$
(32)

Nontrivial solution to the linear equations (32) exists only if the determinant is equal to zero, i.e.,

$$ \mathrm{det} \left[\,a^\prime(u_i,u_j) - \lambda_1 b^\prime(u_i,u_j) - \lambda^\prime_1 \delta_{ij}\,\right]=0 \label{e:det_0} $$
(33)

Finally, substitute (8) and (9) into (33) and noting that \(a(u_i,u_j^\prime)=\lambda_1 b(u_i,u_j^\prime)\) and \(a(u_i^\prime,u_j)=\lambda_1 b(u_i^\prime,u_j)\), we can get

$$ \mathrm{det} \left[\,\mathcal{M}_{ij} - \lambda^\prime_1 \delta_{ij}\,\right]=0 $$
(34)

where \(\mathcal{M}_{ij}\) are given by

$$ \mathcal{M}_{ij} = \int_{\Gamma_N} G^{ij}\,V_n\mathrm{d} s,\quad i,j=1,2 \label{e:sensitivity_matrix} $$
(35)

This is the result of (18).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, Q., Shi, T. & Wang, M.Y. A level set based shape and topology optimization method for maximizing the simple or repeated first eigenvalue of structure vibration. Struct Multidisc Optim 43, 473–485 (2011). https://doi.org/10.1007/s00158-010-0595-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-010-0595-6

Keywords

Navigation