Skip to main content
Log in

Marker-assisted selection for scab resistance and columnar growth habit in inter-varietal population of apple (Malus × domestica)

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

In recent years, there has been significant progress in enhancing the genetic foundation underlying important agricultural traits such as resistance to scab and the development of a columnar growth habit. V. inaequalis is a hemibiotrophic fungus widely distributed in temperate regions where apples are grown on commercial scale. The present investigation was undertaken to identify Vf gene and Co gene, which, respectively, confer resistance against apple scab disease and columnar phenotype in apple cultivar ‘Rosalie’ and introgression of both the genes in commercially important cultivar ‘Fuji’. Polymorphism survey was carried out between the two parents using 22 simple sequence repeat (SSR) and sequence-characterized amplified region (SCAR) markers. The observations revealed that almost 50% hybrids fall in resistant category and 50% in susceptible category. The results of marker-assisted screening confirmed 38 F1s carrying resistance gene for scab while the remaining 32 F1 plants were found to be lacking the gene. The 38 genotypically scab-resistant hybrids were selected for further characterization as columnar and non-columnar plants. Based on the selection criteria, 21 individuals were categorized as columnar and the remaining 17 were categorized as non-columnar. The phenotypic screening was followed by screening of F1 s using molecular markers for Co gene. The amplification of Co-specific markers yielded columnar-specific fragments in the population and fitted the expected 1:1 Mendelian ratio. 18 scab-resistant F1 hybrids were found to carry Co gene and the remaining 20 did not possess the gene for columnar growth habit. Gene-specific primers identified in the present study can be directly used for screening large apple germplasm in a short period of time for developing resistant varieties against apple scab as well as varieties with columnar growth habit. Hybrids with verified scab resistance and columnar growth can be swiftly utilized as scab-resistant columnar cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data presented in this study are available on request from the corresponding author. The data are not publicly available due to privacy.

References

  • Bai T, Zhu Y, Fernández-Fernández F, Keulemans J, Brown S, Xu K (2012) Fine genetic mapping of the Co locus controlling columnar growth habit in apple. Mol Genet Genom 287:437–450

    Article  CAS  Google Scholar 

  • Baldi P, Wolters PJ, Komjanc M, Viola R, Velasco R, Salvi S (2013) Genetic and physical characterisation of the locus controlling columnar habit in apple (Malus x domestica Borkh.). Mol 31:429–440

    CAS  Google Scholar 

  • Barbara DJ, Roberts AL, Xu XM (2008) Virulence characteristics of apple scab (Venturia inaequalis) isolates from monoculture and mixed orchards. Plant Pathol 57:552–561

    Article  Google Scholar 

  • Belfanti E, Silfverberg-Dilworth E, Tartarini S, Patocchi A, Barbieri M, Zhu J, Sansavini S (2004) The HcrVf2 gene from a wild apple confers scab resistance to a transgenic cultivated variety. Proc Nat Acad Sci 101(3):886–890

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Bendokas V, Gelvonauskiene D, Siksnianas T, Staniene G, Siksnianiene JB, Gelvonauskis B, Stanys V (2012) Morphological traits of phytomers and shoots in the first year of growth as markers for predicting apple tree canopy architecture. Plant Breed 131:180–185

    Article  Google Scholar 

  • Bodea M, Pamfil D, Pătraşu B, Sestras R, Petricele I (2008) Molecular markers for detecting scab (Venturia inaequalis) resistance in apple cultivars and their F1 hybrids. In: Proceedings. 43rd Croatian and 3rd International Symposium on Agriculture. Opatija. Croatia, pp 375–379

  • Brown S, Maloney K (2008) Scab-resistant cultivars (varieties). NY Fruit Q 16(4):3–6

    Google Scholar 

  • Bus V, Rikkerink E, Aldwinckle HS, Caffier V, Durel CE, Gardiner S, Gessler C, Groenwold R, Laurens F, Le Cam B et al (2009) A proposal for the nomenclature of Venturia inaequalis races. Acta Hortic 814:739–746

    Article  Google Scholar 

  • Bus VG, Rikkerink EH, Cafer V, Durel CE, Plummer KM (2011) Revision of the nomenclature of the diferential host-pathogen interactions of Venturia inaequalis and Malus. Ann Rev Phytopathol 49:391–413

    Article  CAS  Google Scholar 

  • Chevalier M, Lespinasse Y, Renaudin S (1991) A microscopic study of the different classes of symptoms coded by the Vf gene in apple for resistance to scab (Venturia inaequalis). Plant Pathol 40(2):249–256

    Article  Google Scholar 

  • Conner PJ, Brown SK, Weeden NF (1997) Randomly amplified polymorphic DNA-based genetic linkage map of three apple cultivars. J Am Soc Hortic Sci 122:350–359

    Article  CAS  Google Scholar 

  • Costes E, Lauri PE, Regnard JL (2006) Analyzing fruit tree architecture: implications for tree management and fruit production. Hortic Rev 32:1–61

    Google Scholar 

  • Dar MS, Ahmad M, Yetoo NUN, Bhatt B, Bhat SN, Altaf H, Mushtaq M (2023) Genetic footprint of population diversity and genetic structure of Venturia inaequalis infecting apple (Malus× domestica Borkh). 3 Biotech 13(8):273

    Article  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • FAOSTAT: http://faostat3.fao.org/browse/Q/QC/

  • Flachowsky H, Le-Roux PM, Peil A, Patocchi A, Richter K, Hanke MV (2011) Application of a high-speed breeding technology to apple (Malus x domestica) based on transgenic early flowering plants and marker assisted selection. New Phytol 192:364–377

    Article  CAS  PubMed  Google Scholar 

  • Gessler C, Pertot I (2012) Vf scab resistance of Malus. Trees 26:95–108

    Article  Google Scholar 

  • Gleichauf B, Koller T, Hunziker K, Duffy P, Frey J, Kellerhals M (2009) Modern methods of apple breeding. Schweiz Z 145(3):10–13

    Google Scholar 

  • Hemmat M, Weeden NF, Conner PJ, Brown SK (1997) A DNA marker for columnar growth habit in apple contains a simple sequence repeat. J Am Soc Hortic Sci 122:347–349

    Article  CAS  Google Scholar 

  • Höfer M, Flachowsky H, Schröpfer S, Peil A (2021) Evaluation of scab and mildew resistance in the gene bank collection of apples in Dresden-Pillnitz. Plants (basel) 10(6):1227

    Article  PubMed  Google Scholar 

  • Huaracha EM, Xu ML, Gasic K, Pauwels E, Van den Putte A, Keulemans JW, Korban SS (2004) Phenotypic Reaction and Genetic Analysis Using AFLP-derived SCARs for Resistance to Apple Scab. J phytopathol 152(5):260–266

    Article  CAS  Google Scholar 

  • Hyson DA (2011) A comprehensive review of apples and apple components and their relationship to human health. Adv Nutr 2(5):408–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janick J, Cummins JN, Brown SK, Hemmat M (1996) Apples. In: Janick J, Moore J (eds) Tree and tropical fruits fruit breeding, vol II. Wiley, New York, pp 1–76

    Google Scholar 

  • Karapetsi L, Nianiou-Obeidat I, Zambounis A, Osathanunkul M, Madesis P (2020) Molecular screening of domestic apple cultivars for scab resistance genes in Greece. Czech J Genet Plant Breed 56(4):165–169

    Article  CAS  Google Scholar 

  • Kaymak S, Kacal E, Ozturk Y (2013) Screening breeding apple progenies with Vf apple scab (Venturia inaequalis (Cke.) Wint.) disease resistance gene specific molecular markers. Integrated Protection of Fruit Crops. IOBC-WPRS Bull 91:361–365

    Google Scholar 

  • Kellerhals M, Bertschinger L, Gessler C (2004) Use of genetic resources in apple breeding and for sustainable fruit production. J Fruit Ornam Plant Res 12:53–62

    Google Scholar 

  • Kelsey DF, Brown SK (1992) ‘McIntosh Wijcik’: a columnar mutation of ‘McIntosh’ apple proving useful in physiology and research. Fruit Var J 46:83–88

    Google Scholar 

  • Kenis K, Keulemans J (2007) Study of tree architecture of apple (Malus × domestica Borkh.) by QTL analysis of growth traits. Mol 19:193–208

    CAS  Google Scholar 

  • Khajuria YP, Kaul S, Wani AA, Dhar MK (2018) Genetics of resistance in apple against Venturia inaequalis (Wint) Cke. Tree Genet Genom 14(2):16

    Article  Google Scholar 

  • Koutis K, Francois W, Nicolaus B, Steinemann B, Rodriguez Buruezzo A, Mendes Moreira P, Messmer M (2018) Perspectives on European organic apple breeding and propagation under the frame of LIVESEED Project. In: Proceedings of the 18th International Conference on Organic Fruit-Growing from February 19 to February 21, 2018 at Hohenheim, Germany, pp 104–107

  • Kumar S, Volz RK, Chagné D, Gardiner S (2014) Breeding for apple (Malus × domestica Borkh) fruit quality traits in the genomics era. Genomics of plant genetic resources. Springer, Dordrecht, pp 387–416

    Chapter  Google Scholar 

  • Lapins KO (1974) Spur Type growth habit in 60 apple progenies 1, 2. J Am Soc Hortic Sci 99(6):568–572

    Article  Google Scholar 

  • Mansoor S, Ahmed N, Sharma V, Jan S, Nabi SU, Mir JI, Masoodi KZ (2019) Elucidating genetic variability and population structure in Venturia inaequalis associated with apple scab disease using SSR markers. PLoS ONE 14(11):e0224300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansoor S, Sharma V, Mir MA, Mir JI, Un-Nabi S, Ahmed N, Masoodi KZ (2020) Quantification of polyphenolic compounds and relative gene expression studies of phenylpropanoid pathway in apple (Malus domestica Borkh) in response to Venturia inaequalis infection. Saudi J Biol Sci 27(12):3397–3404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansoor S, Mir JI, Sharma M, Mir MA, Masoodi KZ, Chung YS (2023a) Polyphenolic diversity and antioxidant potential of important apple (Malus domestica Borkh) cultivars. Plant Biotechnol Reports 17(5):653–663

    Article  CAS  Google Scholar 

  • Mansoor S, Sakina A, Mir MA, Mir JI, Wani AA, Un-Nabi S, Masoodi KZ (2023b) Elucidating the role of reactive oxygen species metabolism and phenylpropanoid pathway during an incompatible interaction between apple-Venturia inaequalis host-pathosystem. South Afr J Bot 160:428–436

    Article  CAS  Google Scholar 

  • Martinez BA, Ortiz BA, Montesions E, Murillo J (2012) Venturia inaequalis resistance in local Spanish cider apple germplasm under controlled and field conditions. Euphytica 188:273–283

    Article  Google Scholar 

  • Masoodi KZ, Ahmed N, Mir MA, Bhat B, Shafi A, Mansoor S, Ganai NA (2022) Comparative transcriptomics unravels new genes imparting scab resistance in apple (Malus x domestica Borkh). Funct Integr Genom 22(6):1315–1330

    Article  CAS  Google Scholar 

  • Mir S, Masoodi K, Sakina A, Bhat K, Padder BA, Murtaza I, Nazir N, Shikari A (2019) Marker based screening of F1 (Firdous x Gala) mapping population for major scab resistance gene Rvi6 in apple (Malus × domestica). Int J Curr Microbiol Appl Sci 8:2641–2646

    Article  CAS  Google Scholar 

  • Moriya S, Iwanami H, Kotoda N, Takahashi S, Yamamoto T, Abe K (2009) Development of a marker-assisted selection system for columnar growth habit in apple breeding. J Jpn Soc Hortic Sci 78:279–287

    Article  CAS  Google Scholar 

  • Moriya S, Okada K, Haji T, Yamamoto T, Abe K (2012) Fine mapping of Co, a gene controlling columnar growth habit located on apple (Malus x domestica Borkh.) linkage group 10. Plant Breed 131:437–450

    Article  Google Scholar 

  • Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van de Weg E, Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus x domestica Borkh.). Mol breed 10(4):217–241

    Article  CAS  Google Scholar 

  • Okada K, Wada M, Moriya S, Katayose Y, Fujisawa H, Wu J, Abe K (2016) Expression of a putative dioxygenase gene adjacent to an insertion mutation is involved in the short internodes of columnar apples (Malus× domestica). J Plant Res 129(6):1109–1126

    Article  CAS  PubMed  Google Scholar 

  • Otto D, Petersen R, Brauksiepe B, Braun P, Schmidt E (2014) The columnar mutation (“Co gene”) of apple (Malus × domestica) is associated with an integration of a Gypsy-like retrotransposon. Mol 33:863–880

    CAS  Google Scholar 

  • Papp D, Singh J, Gadoury DM, Khan MA (2019) New North American isolates of Venturia inaequalis can overcome apple scab resistance of Malus foribunda 821. Plant Dis 104(3):649–655

    Article  Google Scholar 

  • Parita B, Kumar SN, Darshan D, Karen P (2018) Elucidation of genetic diversity among ashwagandha [Withania somnifera (L.) Dunal] genotypes using EST-SSR markers. Res J Biotechnol 13:52–59

    CAS  Google Scholar 

  • Pătraşcu B, Pamfil D, Sestras R, Botez C, Gaboreanu I (2006) Marker assisted selection for response attack of Venturia inaequalis in different apple genotype. Not Bot Horti Agrobot Cluj Napoca 34:121–133

    Google Scholar 

  • Patocchi A, Gianfranceschi L, Gessler C (1999) Towards the map-based cloning of Vf: fine and physical mapping of the Vf region. Theor Appl Genet 99:1012–1017

    Article  CAS  Google Scholar 

  • Petersen R, Krost C (2013) Tracing a key player in the regulation of plant architecture: the columnar growth habit of apple trees (Malus× domestica). Planta 238(1):1–22

    Article  CAS  PubMed  Google Scholar 

  • Raja WH, Yousuf N, Qureshi I, Sharma OC, Singh DB, Kumawat KL, Mansoor S (2022) Morpho-molecular characterization and genetic diversity analysis across wild apple (Malus baccata) accessions using simple sequence repeat markers. South Afr J Bot 145:378–385

    Article  CAS  Google Scholar 

  • Rasool A, Bhat KM, Mir MA, Jan A, Dar NA, Mansoor S (2022) Elucidating genetic variability pertaining to flowering, maturity and morphological characters among various apple (Malusdomestica Borkh.) cultivars. S Afr J Bot 145:386–396

    Article  CAS  Google Scholar 

  • Sambrook J, Russell RW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, p 2100

    Google Scholar 

  • Savel’eva NI, Lyzhin AS, Kudryavtzev AM, Boris KV, Shamshin IN (2015) Use of molecular markers for identification of genotypes of columnar apple trees. Russ Agric Sci 41(5):323–325

    Article  Google Scholar 

  • Saveleva N, Lyzhin A, Yushkov A, Zemisov A, Borzykh N (2020) Screening of apple genotypes with the columnar growth habit using control markers. BIO Web Conf 25:1–5

    Article  Google Scholar 

  • Sedov EN (2014) Apple breeding programs and methods, their development and improvement. Russ J Genet: Appl Res 4:43––51

    Article  Google Scholar 

  • Sheikh MA, Bhat K, Mir J, Mir M, Nabi SU, Bhat HA, Shafi W, Zaffer S, Jan S, Raja WH (2017) Phenotypic and molecular screening for diseases resistance of apple cultivars and selections against apple scab (Venturia inaequalis). Int J Conserv Sci 5(4):1107–1113

    CAS  Google Scholar 

  • Sheikh MM, Khalid M, Javid A, Mohammad S (2020) Introgression of scab resistance gene Vf (Rvi6) in commercially grown susceptible cultivar Fuji Azitec of apple (Malus x domestica) using marker assisted selection. Res J Biotechnol 15:50–56

    CAS  Google Scholar 

  • Silfverberg-Dilworth E, Matasci CL, Van de Weg WE, Van Kaauwen MPW, Walser M, Kodde LP, Soglio V, Gianfranceschi L, Durel CE, Costa F, Yamamoto T, Koller B, Gessler C, Patocchi A (2006) Microsatellite markers spanning the apple (Malus x domestica Borkh,) genome. Tree Genet Genomes 2(4):202–224

    Article  Google Scholar 

  • Soriano JM, Joshi SG, Van Kaauwen M, Noordijk Y, Groenwold R, Henken B, Van de Weg WE, Schouten HJ (2009) Identification and mapping of the novel apple scab resistance gene Vd3. Tree Genet Genom 5(3):475–482

    Article  Google Scholar 

  • Tartarini S, Gianfranceschi L, Sansavini S, Gessler C (1999) Development of reliable PCR markers for the selection of the Vf gene conferring scab resistance in apple. Plant Breed 118(2):183–186

    Article  Google Scholar 

  • Tartarini S, Sansavini S, Vinatzer B, Gennari F, Domizi C (2000) Efficiency of Marker Assisted Selection (MAS) for the Vf Scab Resistance Gene. Acta Hortic 538:549–552

    Article  Google Scholar 

  • Tian YK, Wang CH, Zhang JS, James C, Dai HY (2005) Mapping Co, a gene controlling the columnar phenotype of apple, with molecular markers. Euphytica 145:181–188

    Article  CAS  Google Scholar 

  • Tobutt KR (1985) Breeding columnar apples at East Malling. Acta Hortic 159:63–68

    Article  Google Scholar 

  • Vinatzer BA, Patocchi A, Tartarini S, Gianfranceschi L, Sansavini S, Gessler C (2004) Isolation of two microsatellite markers from BAC clones of the Vf scab resistance region and molecular characterization of scab resistant accessions in Malus germplasm. Plant Breed 123(4):321–326

    Article  CAS  Google Scholar 

  • Wolters PJ, Schouten HJ, Velasco R, Si-Ammour A, Baldi P (2013) Evidence for regulation of columnar habit in apple by a putative 2OG-Fe(II) oxygenase. New Phytol 200:993–999

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Dai HY (2011) Comparison of photosynthetic and morphological characteristics and micro-structure of roots and shoots, between columnar apple and standard apple trees of hybrid seedlings. Pyton Int J Exp Bot 80:119–125

    Google Scholar 

Download references

Funding

The study was funded by Ministry of Education (2019R1A6A1A11052070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Suk Chung.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Ethical approval

Not applicable.

Consent to participate

All authors consent to participate in the manuscript publication.

Consent for publication

All authors approved the manuscript to be published.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasool, A., Bhat, K.M., Mir, M.A. et al. Marker-assisted selection for scab resistance and columnar growth habit in inter-varietal population of apple (Malus × domestica). Plant Biotechnol Rep 18, 57–73 (2024). https://doi.org/10.1007/s11816-024-00889-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-024-00889-2

Keywords

Navigation