Skip to main content

Breeding for Apple (Malus × domestica Borkh.) Fruit Quality Traits in the Genomics Era

  • Chapter
  • First Online:
Genomics of Plant Genetic Resources

Abstract

Apple is one of the most widely cultivated tree fruits in the temperate regions of the world. Development of new apple cultivars is generally based on eating quality, appearance, marketability, health/wellbeing and more recently, on environmental sustainability. A range of new technologies that will both reduce unit costs and increase production are being integrated in apple breeding programmes. Also, molecular breeding is opening an opportunity to significantly reduce the time to incorporate new traits from wild relatives into established crops; enhancing nutritional value, and enabling adaptation to new environmental conditions. The availability of genome sequence along with high throughput genotyping platforms is transforming the strategies for developing new cultivars. Now a range of genome-based selection strategies are providing opportunities to accelerate cultivar breeding. Genomic selection (GS) can be used to obtain genomic breeding values for choosing next-generation parents or selections for further testing as potential commercial cultivars. An empirical study in a New Zealand apple cultivar breeding programme showed that the selection response per unit time using GS compared with the conventional selection were very high (> 100 %) especially for low-heritability traits. The cost for highly paralleled targeted genotyping (e.g. single nucleotide polymorphism assays) is constantly decreasing, which would make implementation of GS affordable in near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Albrecht A, Wimmer V, Auinger H-J et al (2011) Genome based prediction of testcross values in maize. Theor Appl Genet 123:339–350

    PubMed  Google Scholar 

  • Alston FH, Phillips KL, Evans KM (2000) A Malus gene list. Acta Hort 538:561–570

    CAS  Google Scholar 

  • Andersson L (2001) Genetic dissection of phenotypic diversity in farm animals. Nat Rev Genet 2:130–138

    CAS  PubMed  Google Scholar 

  • Aranzana MJ, Abbassi EK, Howad W, Arús P (2010) Genetic variation, population structure and linkage disequilibrium in peach commercial varieties. BMC Genet 11:69

    PubMed Central  PubMed  Google Scholar 

  • Basil N, Lewers K (2009) Genomics opportunities, new crops and new products. In: Folta KM, Gardiner SE (eds) Genetics and genomics of the Rosaceae. Springer, New York, pp 55–70

    Google Scholar 

  • Batlle I, Lozano L, Iglesias I et al (2009) The IRTA-HortResearch apple scion breeding programme: aiming for high fruit quality under warm growing conditions. Acta Hort 814:209–214

    Google Scholar 

  • Baumgartner IO, Leumann LR, Frey JE et al (2012) Breeding apples to withstand infection pressure by fireblight and other diseases. In: 15th International Conference on Organic Fruit-Growing, Hohenheim, Germany, 20th–22nd February. www.ecofruit.net

  • Bernardo R, Yu J (2007) Prospects for genome-wide selection for quantitative traits in maize. Crop Sci 47:1082–1090

    Google Scholar 

  • Berry DP, Kearney F, Harris BL (2009) Genomic Selection in Ireland. Proceedings of the interbull international workshop—genomic information in genetic evaluations, Uppsala, Sweden, Bulletin no. 39

    Google Scholar 

  • Bringhurst RS (1983) Breeding strategy. In: Janick J, Moore JN (eds). Methods in fruit breeding. Purdue University Press, West Lafayette, pp 147–153

    Google Scholar 

  • Brown AG (1975) Apples. In: Janick J, Moore JN (eds) Advances in fruit breeding. Purdue University Press, West Lafayette, pp 3–37

    Google Scholar 

  • Brown AG, Harvey DM (1971) The nature and inheritance of sweetness and acidity in the cultivated apple. Euphytica 20:68–80

    CAS  Google Scholar 

  • Bus VGM, Chagne D, Bassett HCM et al (2008) Genome mapping of three major resistance genes to woolly apple aphid (Eriosoma lanigerum Hausm.). Tree Genet Genomes 4:223–236

    Google Scholar 

  • Bus VGM, Esmenjaud D, Buck E, Laurens F (2009) Application of genetic markers in rosaceous crops. In: Folta KM, Gardiner SE (eds) Genetics and genomics of the rosaceae. Springer, New York, pp 563–600

    Google Scholar 

  • Bus VGM, Bassett H, Bowatte D et al (2010) Genome mapping of an apple scab, a powdery mildew and a woolly apple aphid resistance gene from open-pollinated mildew immune selection. Tree Genet Genomes 6:477–487

    Google Scholar 

  • Calus M (2010) Genomic breeding value prediction: methods and procedures. Animal 4:157–164

    CAS  PubMed  Google Scholar 

  • Calus M, Veerkamp R (2007) Accuracy of breeding values when using and ignoring the polygenic effect in genomic breeding value estimation with a marker density of one SNP per cM. J Anim Breed Genet 124:362–368

    CAS  PubMed  Google Scholar 

  • Celton JM, Tustin DS, Chagne D, Gardiner SE (2009) Construction of a dense genetic linkage map for apple rootstocks using SSRs developed from Malus ESTs and Pyrus genomic sequences. Tree Genet Genomes 5:93–107

    Google Scholar 

  • Celton JM, Martinez S, Jammes MJ et al (2011) Deciphering the genetic determinism of bud phenology in apple progenies: a new insight into chilling and heat requirement effects on flowering dates and positional candidate genes. New Phytol 192:378–392

    PubMed  Google Scholar 

  • Cevik V, Ryder CD, Popovich A et al (2009) A FRUITFULL-like gene is associated with genetic variation for fruit flesh firmness in apple (Malus domestica Borkh.). Tree Genet Genomes 6:271–279

    Google Scholar 

  • Chagné D, Carlisle C, Blond C et al (2007) Mapping a candidate gene (MdMYB10) for red flesh and foliage colour in apple. BMC Genomics 8:212

    PubMed Central  PubMed  Google Scholar 

  • Chagné D, Gasic K, Crowhurst RN et al (2008) Development of a set of SNP markers present in expressed genes of the apple. Genomics 92:353–358

    PubMed  Google Scholar 

  • Chagné D, Crowhurst RN, Troggio M et al (2012a) Genome-Wide SNP Detection, Validation, and Development of an 8 K SNP Array for Apple. PLoS ONE 7(2):e31745

    Google Scholar 

  • Coart E, Vekemans X, Smulders MJM et al (2003) Genetic variation in the endangered wild apple (Malus sylvestris (L.) Mill.) in Belgium as revealed by amplified fragment length polymorphism and microsatellite markers. Mol Ecol 12:845–857

    CAS  PubMed  Google Scholar 

  • Coart E, Van Glabeke S, De Loose M et al (2006) Chloroplast diversity in the genus Malus: new insights into the relationship between the European wild apple (Malus sylvestris (L.) Mill.) and the domesticated apple (Malus domestica Borkh.). Mol Ecol 15:2171–2182

    CAS  PubMed  Google Scholar 

  • Cook M, Gardiner S (2004) Development of a fully automated system to extract DNA from difficult plant tissues for genomics research. In: Plant & Animal Genome XII Conference, San Diego, CA (Abstract P180)

    Google Scholar 

  • Coster A, Bastiaansen JWM, Calus MPL et al (2010) Sensitivity of methods for estimating breeding values using genetic markers to the number of QTL and distribution of QTL variance. Genet Sel Evol 42:9

    PubMed Central  PubMed  Google Scholar 

  • Crossa J, de los CG, Pérez P et al (2010) Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186:713–724

    Google Scholar 

  • Daetwyler HD, Pong-Wong R, Villanueva B, Woolliams JA (2010) The impact of genetic architecture on genome-wide evaluation methods. Genetics 185:1021–1031

    Google Scholar 

  • Daillant-Spinnler B, MacFie HJH, Beyts PK, Hedderley D (1996) Relationships between perceived sensory properties and major preference directions of 12 varieties of apples from the Southern Hemisphere. Food Qual Pref 7:113–126

    Google Scholar 

  • De Roos APW, Schrooten C, Mullaart E et al (2009) Genomic selection at CRV. Proceedings of the interbull international workshop—genomic information in genetic evaluations. Uppsala, Sweden, Bulletin no. 39

    Google Scholar 

  • Dekkers JCM (2004) Commercial application of marker- and gene-assisted selection in livestock: strategies and lessons. J Anim Sci 82:E313–E328

    PubMed  Google Scholar 

  • Devoghalaere F, Doucen T, Guitton B et al (2012) A genomics approach to understanding the role of auxin in apple (Malus x domestica) fruit size control. BMC Plant Biol 12. DOI 10.1186/1471–2229-12–7

    Google Scholar 

  • Dunemann F, Ulrich D, Malysheva-Otto L et al (2012) Functional allelic diversity of the apple alcohol acyl-transferase gene MdAAT1 associated with fruit ester volatile contents in apple cultivars. Mol Breeding 29:609–625

    CAS  Google Scholar 

  • Durel C-E, Laurens F, Fouillet A, Lespinasse Y (1998) Utilisation of pedigree information to estimate genetic parameters from large, unbalanced data sets in apple. Theor Appl Genet 96:1077–1085

    Google Scholar 

  • Espley RV, Brendolise C, Chagne D et al (2009) Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples. Plant Cell 21:168–183

    CAS  PubMed Central  PubMed  Google Scholar 

  • Evans K (2012) Apple breeding in the pacific northwest. Acta Hort (in press)

    Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th ed. Longman, Harlow

    Google Scholar 

  • Fernando R, Grossman M (1989) Marker assisted selection using best linear unbiased prediction. Genet Select E 21:467–477

    Google Scholar 

  • Fischer C (1994) Shortening of the juvenile period in apple breeding. In: Schmidt H, Kellerhals M (eds) Progress in temperate fruit breeding. Kluwer, Dordrecht, pp 161–164

    Google Scholar 

  • Fischer M, Fischer C (2004) 75 years of tradition in classical pillnitz fruit breeding—aims, results. Acta Hort 663:699–706

    Google Scholar 

  • Flachowsky H, Peil A, Sopanen T et al (2007) Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) induces early flowering in apple (Malus x domestica Borkh.). Plant Breed 126:137–145

    CAS  Google Scholar 

  • Flachowsky H, Hanke M-V, Peil A et al (2009) A review on transgenic approaches to accelerate breeding of woody plants. Plant Breed 128:217–226

    CAS  Google Scholar 

  • Flachowsky H, Le Roux P-M, Peil A et al (2011) Application of a high-speed breeding technology to apple (Malus x domestica) based on transgenic early flowering plants and marker-assisted selection. New Phytol 192:364–377

    CAS  PubMed  Google Scholar 

  • Forsline PL, Aldwinckle HS, Dickson EE et al (2003) Collection, maintenance, characterization, and utilization of wild apples of central Asia. Hortic Rev 29:1–61

    Google Scholar 

  • Frey JE, Frey B, Sauer C, Kellerhals M (2004) Efficient low-cost DNA extraction and multiplex fluorescent PCR method for marker-assisted selection in breeding. Plant Breed 123:554–557

    CAS  Google Scholar 

  • Gardiner S, Norelli J, de Silva N et al (2012) Candidate gene markers associated with quantitative trait loci for fireblight resistance in Malus ’Robusta 5’ accessions. BMC Genet 13:25. doi: 10.1186/1471–2156-13–25

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gardiner SE, Bus VGM, Rusholme RL et al (2007) Apple. In: Kole C (ed) Genome mapping and molecular breeding in plants, Vol. 4, fruits and nuts. Springer, Heidelberg, pp 1–62

    Google Scholar 

  • Gasic K, Gonzalez DO, Thimmapuram J et al (2009) Comparative analysis and functional annotation of a large expressed sequence tag collection of apple. Plant Genome 2:23–38

    CAS  Google Scholar 

  • Goddard ME (2009) Genomic selection: prediction of accuracy and maximisation of long term response. Genetica 136:245–257

    PubMed  Google Scholar 

  • Guitton B, Kelner J-J, Velasco R et al (2012) Genetic control of biennial bearing in apple. J Exp Bot 63:131–149

    CAS  PubMed  Google Scholar 

  • Habier D, Fernando RL, Dekkers JC (2007) The impact of genetic relationship information on genome-assisted breeding values. Genetics 177:2389–2397

    CAS  PubMed  Google Scholar 

  • Habier D, Tetens J, Seefried F-R et al (2010) The impact of genetic relationship information on genomic breeding values in German Holstein cattle. Genet Sel Evol 42:5

    PubMed Central  PubMed  Google Scholar 

  • Harker FR, Gunson FA, Jaeger SR (2003) The case for fruit quality: an interpretive review of consumer attitudes and preferences. Postharvest Biol Tec 28:333–347

    Google Scholar 

  • Harris BL, Johnson DL, Spelman RJ (2008) Genomic selection in New Zealand and the implications for national genetic evaluation. Proceedings of the 36th ICAR Session, Niagara Falls (USA), pp 325–331

    Google Scholar 

  • Harris SA, Robinson JP, Juniper BE (2002) Genetic clues to the origin of the apple. Trends Genet 18:426–430

    CAS  PubMed  Google Scholar 

  • Harrison N, Harrison R (2011) On the evolutionary history of the domesticated apple. Nat Genet 43:1043–1044

    CAS  PubMed  Google Scholar 

  • Hayes BJ, Visscher PM, Goddard ME (2009a) Increased accuracy of artificial selection by using the realized relationship matrix. Genet Res 91:47–60

    CAS  Google Scholar 

  • Hayes BJ, Daetwyler HD, Bowman P et al (2009b) Accuracy of genomic selection: comparing theory and results. Proc Assoc Advmt Ani Breed Genet 18:34–37

    Google Scholar 

  • Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME (2009c) Invited review: genomic selection in dairy cattle: progress and challenges. J Dairy Sci 92:433–443

    CAS  Google Scholar 

  • Heffner EL, Lorenz AJ, Jannink JL, Sorrells ME (2010) Plant breeding with genomic selection: gain per unit time and cost. Crop Sci 50:1681–1690

    Google Scholar 

  • Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    CAS  Google Scholar 

  • Henderson CR (1984) Application of linear models in animal breeding. University of Guelph

    Google Scholar 

  • Heslot N, Yang H-P, Sorrells ME, Jannink J-L (2012) Genomic selection in plant breeding: a comparison of models. Crop Sci 52:146–160

    Google Scholar 

  • Iwata H, Hayashi T, Tsumura Y (2011) Prospects for genomic selection in conifer breeding: a simulation study of Cryptomeria japonica. Tree Genet Genomes 7:1–12

    Google Scholar 

  • Jaeger SR, Andani Z, Wakeling IN, MacFie HJH (1998) Consumer preferences for fresh and aged apples: a crosscultural comparison. Food Qual Pref 9:355–366

    Google Scholar 

  • Janick J, Cummins JN, Brown SK, Hemmat M (1996) Apples. In: Janick J, Moore JN (eds) Fruit breeding. Vol I. Tree and tropical fruits. John Wiley & Sons Inc., New York, pp 1–77

    Google Scholar 

  • Jannink JL (2010) Dynamics of long-term genomic selection. Genet Sel Evol 42:35

    PubMed Central  PubMed  Google Scholar 

  • Jannink JL, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics 9:166–177

    CAS  PubMed  Google Scholar 

  • Janse J, Verhaegh JJ, den Nijs APM (1994) Early selection of partial resistance to powdery mildew, Podosphaera leucotricha (Ell. et EV.) Salm. in apple progenies. Euphytica 77:7–9

    Google Scholar 

  • Kellerhals M, Bamgartner I, Leumann L et al (2012) Progress in pyramiding disease resistances in apple breeding. Acta Hort (in press)

    Google Scholar 

  • Khan SA, Chibon P-Y, de Vos RCH et al (2012) Genetic analysis of metabolites in apple fruits indicates an mQTL hotspot for phenolic compounds on linkage group 16. J Expt Bot 8:895–2908

    Google Scholar 

  • Kizilkaya K, Fernando RL, Garrick DJ (2010) Genomic prediction of simulated multibreed and purebred performance using observed fifty thousand single nucleotide polymorphism genotypes. J Anim Sci 88:544–551.

    Google Scholar 

  • Korban SS, Tartarini S (2009) Apple structural genomics. In: Folta KM, Gardiner SE (eds) Genetics and genomics of the rosaceae. Springer, New York, pp 85–119

    Google Scholar 

  • Kouassi AB, Durel C-E, Costa F et al (2009) Estimation of genetic parameters and prediction of breeding values for apple fruit-quality traits using pedigreed plant material in Europe. Tree Genet Genomes 5:659–672

    Google Scholar 

  • Kumar S, Volz RK, Alspach PA, Bus VGM (2010) Development of a recurrent apple breeding programme in New Zealand: a synthesis of results, and a proposed revised breeding strategy. Euphytica 173:207–222

    Google Scholar 

  • Kumar S, Volz RK, Weskett R (2011) Genetic architecture of fruit quality traits in Malus x domestica (Borkh.) compared between own-rooted seedlings and vegetative propagules on ‘M. 9’ rootstock. Tree Genet Genomes 7:1079–1088

    Google Scholar 

  • Kumar S, Bink MCAM, Volz RK et al (2012a) Towards genomic selection in apple (Malus × domestica Borkh.) breeding programs: prospects, challenges and strategies. Tree Genet Genomes 8:1–14

    Google Scholar 

  • Kumar S, Chagné D, Bink MCAM et al (2012b) Genomic selection for fruit quality traits in apple (Malus × domestica Borkh.). PLoS ONE 7(5):e36674

    CAS  Google Scholar 

  • Labuschagné IF (2004) Budbreak number as selection criteria for breeding apples adapted to mild winter climatic conditions: a review. Acta Hort 663:775–781

    Google Scholar 

  • Laurens F (1999) Review of the current apple breeding programs in the world: objectives for scion cultivar improvement. Acta Hort 484:163–170

    Google Scholar 

  • Le Roux P-M, Flachowsky H, Hanke M-V et al (2012) Development of apple pre-breeding genotypes highly resistant to fireblight by early flowering In: BiotechFruit 2012, Nelson, New Zealand, 25th-29th March, pp 133. www.biotechfruit.com

  • Legarra A, Robert-Granie C, Manfredi E, Elsen J-M (2008) Performance of genomic selection in mice. Genetics 180:611–618

    PubMed  Google Scholar 

  • Lespinasse Y (2009) Review of pome fruit breeding in Europe: which strategies for the near future? Acta Hort 824:865–871

    Google Scholar 

  • Lespinasse Y, Alston FH, Watkins R (1976) Cytological techniques for use in apple breeding. Ann Appl Biol 82:349–353

    Google Scholar 

  • Liebhard R, Kellerhals M, Pfammatter W et al (2003) Mapping quantitative physiological traits in apple (Malus × domestica Borkh.). Plant Mol Biol 52:511–526

    CAS  PubMed  Google Scholar 

  • Longhi S, Moretto M, Viola R et al (2012) Comprehensive QTL mapping survey dissects the complex fruit texture physiology in apple (Malus × domestica Borkh.). J Expt Bot 63:1107–1121

    CAS  Google Scholar 

  • Lorenz AJ, Hamblin MT, Jannink J-L (2010) Performance of single nucleotide polymorphisms versus haplotypes for genome-wide association analysis in barley. PLoS ONE 5: e14079.

    Google Scholar 

  • Lorenz AJ, Chao S, Asoro FG et al (2011) Genomic selection in plant breeding: knowledge and prospects. Adv Agron 110:77–123

    Google Scholar 

  • Lorenzana RE, Bernardo R (2009) Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theor Appl Genet 120:151–161

    PubMed  Google Scholar 

  • Luby JJ, Shaw DV (2001) Does marker-assisted selection make dollars and sense in a fruit breeding program? HortScience 36:872–879

    Google Scholar 

  • Lund M, Su G (2009) Genomic selection in the Nordic countries. Proceedings of the interbull international workshop—genomic information in genetic evaluations. Uppsala, Sweden, Bulletin no. 39

    Google Scholar 

  • Meuwissen THE (2009) Accuracy of breeding values of ’unrelated’ individuals predicted by dense SNP genotyping. Genet Sel Evol 41:35–43

    PubMed Central  PubMed  Google Scholar 

  • Meuwissen THE, Goddard ME (1996) The use of marker haplotypes in animal breeding schemes. Genet Sel Evol 28:161–176

    PubMed Central  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed  Google Scholar 

  • Micheletti D, Troggio M, Zharkikh A et al (2011) Genetic diversity of the genus Malus and implications for linkage mapping with SNPs. Tree Genet Genomes 7:11

    Google Scholar 

  • Montes JM, Melchinger AE, Reif JC (2007) Novel throughput phenotyping platforms in plant genetic studies. Trends Plant Sci 12:433–436

    CAS  PubMed  Google Scholar 

  • Morgan J, Richards A (1993) The book of apples. Ebury Press, London

    Google Scholar 

  • Moser G, Tier B, Crump R et al (2009) A comparison of five methods to predict genomic breeding values of dairy bulls from genome-wide SNP markers. Genet Sel Evol 41:56

    PubMed Central  PubMed  Google Scholar 

  • Newcomb RD, Crowhurst RN, Gleave AP et al (2006) Analyses of expressed sequence tags from apple. Plant Physiol 141:147–166

    PubMed Central  PubMed  Google Scholar 

  • Noiton DAM, Alspach PA (1996) Founding clones, inbreeding, coancestry, and status number of modern apple cultivars. J Am Soc Hortic Sci 121:773–782.

    Google Scholar 

  • O’Rourke D (2011) World apple review. Belrose Inc, Pullman, Washington

    Google Scholar 

  • Oraguzie NC, Iwanami H, Soejima J et al (2004) Inheritance of the Md-ACS1 gene and its relationship to fruit softening in apple (Malus × domestica Borkh.). Theor Appl Genet 108:1526–1533

    CAS  PubMed  Google Scholar 

  • Patocchi A, Frei A, Frey JE, Kellerhals M (2009) Towards improvement of marker assisted selection of apple scab resistant cultivars: Venturia inaequalis virulence surveys and standardization of molecular marker alleles associated with resistance genes. Mol Breeding 24:337–347

    CAS  Google Scholar 

  • Pindo M, Vezzulli S, Coppola G et al (2008) SNP high-throughput screening in grapevine using the SNPlexTM genotyping system. BMC Plant Biol 8:12

    PubMed Central  PubMed  Google Scholar 

  • Rehder A (1940) Manual of cultivated trees and shrubs. MacMillan, New York, NY, pp 389–399

    Google Scholar 

  • Resende MDV, Resende MFRJ, Sansaloni CP et al (2012c) Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytol 194:116–128

    Google Scholar 

  • Resende MFRJ, Muñoz P, Resende MDV et al (2012a) Accuracy of genomic selection methods in a standard dataset of loblolly pine (Pinus taeda L.). Genetics 190:1503–1510

    Google Scholar 

  • Resende MFRJ, Muñoz P, Acosta JJ et al (2012b) Accelerating the domestication of trees using genomic selection: accuracy of prediction models across ages and environments. New Phytol 193:617–624

    Google Scholar 

  • Robinson JP, Harris SA, Juniper BE (2001) Taxonomy of the genus Malus Mill. (Rosaceae) with emphasis on the cultivated apple, Malus x domestica Borkh. Plant Syst Evol 226:35–58

    CAS  Google Scholar 

  • Rothschild MF, Soller M (1997) Candidate gene analysis to detect genes controlling traits of economic importance in domestic livestock. Probe 8:13–20

    Google Scholar 

  • Schenkel FS, Sargolzaei M, Kistemaker G et al (2009) Reliability of genomic evaluation of Holstein cattle in Canada. Proceedings of the interbull international workshop—genomic information in genetic evaluations. Uppsala, Sweden, Bulletin no. 39

    Google Scholar 

  • Silfverberg-Dilworth E, Matasci CL, Van de Weg WE et al (2006) Microsatellite markers spanning the apple (Malus x domestica Borkh.) genome. Tree Genet Genomes 2:202–224

    Google Scholar 

  • Sved JA (1971) Linkage disequilibrium and homozygosity of chromosome segments in finite populations. Theor Popul Biol 2:125–141

    CAS  PubMed  Google Scholar 

  • Toosi A, Fernando RL, Dekkers JCM (2009) Genomic selection in admixed and crossbred populations. J Anim Sci 88:32–46

    PubMed  Google Scholar 

  • VanRaden PM, Van Tassell CP, Wiggans GR et al (2009) Invited review: reliability of genomic predictions for North American Holstein bulls. J Dairy Sci 92:16–24

    CAS  PubMed  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J et al (2010) The genome of the domesticated apple (Malus x domestica Borkh.). Nat Genet 42:833–839

    CAS  PubMed  Google Scholar 

  • Volz RK, Alspach PA, White AG, Ferguson IB (2001) Genetic variability in apple fruit storage disorders. Acta Hort 553:241–244

    Google Scholar 

  • Volz RK, Rikkerink E, Austin P et al (2009) “Fast Breeding” in apple: a strategy to accelerate introgression of new traits into elite germplasm. Acta Hort 814:163–168

    Google Scholar 

  • Wiedow C, Chagné D, Souleyre E et al (2010) QTL and candidate gene mapping of ‘ripe apple’ aroma. In: Plant & Animal Genome XVIII Conference, San Diego, CA, January 9–13

    Google Scholar 

  • Wong C, Bernardo R (2008) Genomewide selection in oil palm: increasing selection gain per unit time and cost with small populations. Theor Appl Genet 116:815–824

    CAS  PubMed  Google Scholar 

  • Xu S (2007) An empirical Bayes method for estimating epistatic effects of quantitative trait loci. Biometrics 63:513–521.

    Google Scholar 

  • Yang JA, Benyamin B, McEvoy BP et al (2010) Common SNPs explain a large proportion of the heritability for human height. Nat Genet 42:565–131

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yi N, Xu S (2008) Bayesian LASSO for quantitative trait loci mapping. Genetics 179:1045–1055.

    Google Scholar 

  • Zhong S, Dekkers JCM, Fernando RL, Jannink J-L (2009) Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a barley case study. Genetics 182:355–364

    CAS  PubMed  Google Scholar 

  • Zhu Y, Barritt BH (2008) Md-ACS1 and Md-ACO1 genotyping of apple (Malus x domestica Borkh.) breeding parents and suitability for marker-assisted selection. Tree Genet Genomes 4:555–562

    Google Scholar 

  • Zhu Y, Evans K, Peace C (2011) Utility testing of an apple skin color MdMYB1 marker in two progenies. Mol Breeding 27:525–532

    Google Scholar 

  • Zimmerman RH (1991) Flowering in crabapple seedlings: methods of shortening the juvenile phase. J Am Soc Hort Sci 96:404–411

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kumar, S., Volz, R., Chagné, D., Gardiner, S. (2014). Breeding for Apple (Malus × domestica Borkh.) Fruit Quality Traits in the Genomics Era. In: Tuberosa, R., Graner, A., Frison, E. (eds) Genomics of Plant Genetic Resources. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7575-6_16

Download citation

Publish with us

Policies and ethics