Skip to main content
Log in

Optimization of an indirect regeneration system for common bean (Phaseolus vulgaris L.)

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

The main problems associated with growing common bean (Phaseolus vulgaris L.) callus are low proliferation and differentiation, and high browning. In this study, common bean callus induced by cotyledon nodes was used as explant material to investigate the effects of different exogenous substances on callus regeneration, as well as the correlation between callus browning and the changes in superoxide dismutase (SOD), peroxidase (POD), and polyphenol oxidase (PPO) enzyme activities during callus culture. Adding AgNO3, CoCl2, Putrescine (Put), and 1-aminocyclopropane-1-carboxylic acid (ACC) to the callus growth medium at appropriate concentrations could significantly improve callus proliferation and differentiation efficiency, while also reducing the degree of browning, compared to controls. Callus explants were cultured in callus proliferation and differentiation medium (CPADM) containing 5 mg·L−1 AgNO3, 15 mg·L−1 Put, 5 mg·L−1 CoCl2, or 0.02 mM ACC, with optimal callus growth at these dosages. After treatment with the four exogenous substances, callus browning was inversely correlated with SOD activity but positively correlated with POD and PPO activities. The maximum rooting frequency of shoots was observed when rooting media was treated with 1 mg·L−1 Indole butyric acid (IBA) or 0.1 mg·L−1 2,4-dichlorophenoxyacetic acid (2,4-D). The average number of primary roots, root length, and root fresh weight were higher after these treatments. The indirect regeneration issue was largely resolved for common bean by the callus culture technique applied in this study, which provides a framework for genetic modification, germplasm preservation, and bean application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available from the authors upon reasonable request.

Abbreviations

AgNO3 :

Silver nitrate

Put:

Putrescine

CoCl2 :

Cobalt chloride

ACC:

1-Aminocyclopropane-1-carboxylic acid

TDZ:

Thioridazine

IBA:

Indole butyric acid

2,4-D:

2,4-Dichlorophenoxyacetic acid

MS:

Murashige and Skoog

CPADM:

Callus proliferation and differentiation medium (MS, 0.5 mg·L−1 TDZ, 3% sucrose, 0.65% agar)

SOD:

Superoxide dismutase

POD:

Peroxidase

PPO:

Polyphenol oxidase

References

  • Arellano J, Fuentes SI, Castillo-Espana P, Castillo-España P, Hernández G (2009) Regeneration of different cultivars of common bean (Phaseolus vulgaris L.) via indirect organogenesis[J]. Plant Cell Tissue Org Cult 96(1):11–18

    Article  CAS  Google Scholar 

  • Akeel A, Jahan A (2020) Role of cobalt in plants: Its stress and alleviation. In: Naeem M, Ansari AA, Gill SS (eds) Contaminants in agriculture: sources, impacts and management. Springer International Publishing p, Cham, pp 339–357

    Chapter  Google Scholar 

  • Al-Mayahi AMW (2014) Effect of copper sulphate and cobalt chloride on growth of the in vitro culture tissues for date palm (Phoenix dactylifera L.) cv. Ashgar. Am J Agricult Biolog Sci 9(1):6–18

    Article  CAS  Google Scholar 

  • Beaver JS, Osorno JM (2009) Achievements and limitations of contemporary common bean breeding using conventional and molecular approaches. Euphytica 168(2):145–175

    Article  CAS  Google Scholar 

  • Bashir MA, Silvestri C, Salimonti A, Rugini E, Cristofori V, Zelasco S (2022) Can ethylene inhibitors enhance the success of olive somatic embryogenesis? Plants 11(2):168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi YE, Yang DC, Choi KT (1998) Induction of somatic embryos by macrosalt stress from mature zygotic embryos of Panax ginseng. Plant Cell Tissue Org Cult 52(3):177–181

    Article  CAS  Google Scholar 

  • Collado R, Veitía N, Bermúdez-Caraballoso I, García L, Torres D, Romero C, Angenon G (2013) Efficient in vitro plant regeneration via indirect organogenesis for different common bean cultivars. Sci Hortic 153:109–116

    Article  CAS  Google Scholar 

  • Chae SC, Kim HH, Park SU (2012) Ethylene inhibitors enhance shoot organogenesis of gloxinia (Sinningia speciosa). Sci World J 2012:1–4

    Article  Google Scholar 

  • Corpas FJ, Barroso JB (2017) Lead-induced stress, which triggers the production of nitric oxide (NO) and superoxide anion (O2-) in Arabidopsis peroxisomes, affects catalase activity. Nitric Oxide 68:103–110

    Article  CAS  PubMed  Google Scholar 

  • Dang W, Wei Z (2009) High frequency plant regeneration from the cotyledonary node of common bean. Biol Plant 53(2):312–316

    Article  CAS  Google Scholar 

  • Deepa A, Anju M, Dennis Thomas T (2018) The applications of TDZ in medicinal plant tissue culture. Thidiazuron: from urea derivative to plant growth regulator. Pp 297–316. Springer: Singapore.

  • Dillen W, De Clercq J, Van Montagu M, Angenon G (1996) Plant regeneration from callus in a range of Phaseolus acutifolius A. Gray Genotypes Plant Sci 118(1):81–88

    Article  CAS  Google Scholar 

  • Giannopolites CN, Ries SK (1977) Superoxide dismutase occurrence in higher plants[J]. Plant Physiol 59:309–314

    Article  Google Scholar 

  • Hatanaka T, Sawabe E, Azuma T, Uchida N, Yasuda T (1995) The role of ethylene in somatic embryogenesis from leaf discs of coffea canephora. Plant Sci 107(2):199–204

    Article  CAS  Google Scholar 

  • Hesami M, Tohidfar M, Alizadeh M, Daneshvar MH (2020) Effects of sodium nitroprusside on callus browning of ficus religiosa: an important medicinal plant. J Forest Res 31(3):789–796

    Article  CAS  Google Scholar 

  • Jha AK, Dahleen LS, Suttle JC (2007) Ethylene influences green plant regeneration from barley callus. Plant Cell Rep 26(3):285–290

    Article  CAS  PubMed  Google Scholar 

  • Kutoš T, Golob T, Kač M, Plestenjak A (2003) Dietary fibre content of dry and processed beans. Food Chem 80(2):231–235

    Article  Google Scholar 

  • Kwapata K, Sabzikar R, Sticklen MB, Kelly JD (2010) In vitro regeneration and morphogenesis studies in common bean. Plant Cell Tissue Org Cult (PCTOC) 100(1):97–105

    Article  CAS  Google Scholar 

  • Kumar V, Giridhar P, Chandrashekar A, Ravishankar G (2008) Polyamines influence morphogenesis and caffeine biosynthesis in in vitro cultures of Coffea canephora P. ex Fr. Acta Physiol Plant 30(2):217–223

    Article  CAS  Google Scholar 

  • Kumar V, Ramakrishna A, Ravishankar G (2007) Influence of different ethylene inhibitors on somatic embryogenesis and secondary embryogenesis from Coffea canephora P ex Fr. In Vitro Cell Develop Biol-Plant 43(6):602–607

    Article  CAS  Google Scholar 

  • Loyola-Vargas VM, Ochoa-Alejo N (2018) An introduction to plant tissue culture: advances and perspectives. Plant Cell Cult Prot. https://doi.org/10.1007/978-1-4939-8594-4_1

    Article  Google Scholar 

  • Liu F, Chen L (2010) Redox dynamics during embryogenic callus induction of Phalaenopsis spp. J Wuhan Bot Res 28:737–743

    Google Scholar 

  • Lau OL, Yang SF (1976) Inhibition of ethylene production by cobaltous ion. Plant Physiol 58(1):114–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Cui X, Liu Y, Xie C, Zhang X, An X, Liu L (2019) Effects of exogenous putrescine on callus induction, proliferation and browning of two varieties of forsythia suspensa. J Chin Med Mater 42(08):1725–1729 ((In Chinese))

    CAS  Google Scholar 

  • Li CZ, Li CZ, Wang D, Wang GX (2005) The protective effects of cobalt on potato seedling leaves during osmotic stress. Botan Bullet Acad Sin 46:119–125

    CAS  Google Scholar 

  • López Arnaldos T, Muñoz R, Ferrer MA, Calderón AA (2001) Changes in phenol content during strawberry (Fragaria× ananassa, cv. Chandler) callus culture. Physiol Plant 113(3):315–322

    Article  PubMed  Google Scholar 

  • Mantiri FR, Kurdyukov S, Lohar DP, Sharopova N, Saeed NA, Wang X-D, VandenBosch KA, Rose RJ (2008) The transcription factor MTSERF1 of the ERF subfamily identified by transcriptional profiling is required for somatic embryogenesis induced by auxin plus cytokinin in medicago truncatula. Plant Physiol 146(4):1622–1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meijer EG, Simmonds J (1988) Polyamine levels in relation to growth and somatic embryogenesis in tissue 6 medicago sativa L. J Exp Bot 39(6):787–794

    Article  CAS  Google Scholar 

  • Mahendran D, Geetha N, Venkatachalam P (2019) Role of silver nitrate and silver nanoparticles on tissue culture medium and enhanced the plant growth and development. Springer, In vitro plant breeding towards novel agronomic traits, pp 59–74

    Google Scholar 

  • Mao JQ, Zaidi MA, Arnason JT, Altosaar I (2006) In vitro regeneration of Vigna unguiculata (L) Walp cv Blackeye cowpea via shoot organogenesis. Plant Cell Tissue Org Cult 87(2):121–125

    Article  CAS  Google Scholar 

  • Mayer AM (2006) Polyphenol oxidases in plants and fungi: going places? A review. Phytochemistry 67:2318–2331

    Article  CAS  PubMed  Google Scholar 

  • Navarro-García N, Martínez-Romero D, Pérez-Tornero O (2016) Assessment of the impact of ethylene and ethylene modulators in Citrus limon organogenesis. Plant Cell Tissue Org Cult (PCTOC) 127(2):405–415

    Article  Google Scholar 

  • Nagori R, Purohit S (2004) In vitro plantlet regeneration in Annona squamosa through direct shoot bud differentiation on hypocotyl segments. Sci Hortic 99(1):89–98

    Article  CAS  Google Scholar 

  • Pitzschke A, Djamei A, Bitton F, Hirt H (2009) A major role of the MEKK1–MKK1/2–MPK4 pathway in ROS signalling. Mol Plant 2:120–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pua E-C, Sim G-E, Chi G-L, Kong L-F (1996) Synergistic effect of ethylene inhibitors and putrescine on shoot regeneration from hypocotyl explants of Chinese radish (Raphanus sativus L. var. longipinnatus Bailey) in vitro. Plant Cell Rep 15(9):685–690

    Article  CAS  PubMed  Google Scholar 

  • Rivera A, Plans M, Sabaté J, Casañas F, Casals J, Rull A, Simó J (2018) The Spanish core collection of common beans (Phaseolus vulgaris L.): an important source of variability for breeding chemical composition. Front Plant Sci 9:1642

    Article  PubMed  PubMed Central  Google Scholar 

  • Rubluo A, Kartha KK (1985) In vitro culture of shoot apical meristems of various phaseolus species and cultivars. J Plant Physiol 119(5):425–433

    Article  Google Scholar 

  • Rakesh B, Sudheer WN, Nagella P (2021) Role of polyamines in plant tissue culture: an overview. Plant Cell Tissue Org Cult (PCTOC) 145(3):487–506

    Article  CAS  Google Scholar 

  • Schoonhoven AV, Voysest O (1991) Common beans: research for crop improvement.

  • Sinha S, Gupta AK (2005) Translocation of metals from fly ash amended soil in the plant of sesbania cannabina l. ritz: effect on antioxidants. Chemosphere 61(8):1204–1214

    Article  CAS  PubMed  Google Scholar 

  • Shah SH, Ali S, Jan SA, Din J, Ali GM (2014) Assessment of silver nitrate on callus induction and in vitro shoot regeneration in tomato (Solanum lycopersicum Mill.). Pakistan J Botany 46(6):2163–2172

    Google Scholar 

  • Salim SAA (2016) Effect of plant growth regulators BA, 2, 4-D, IBA and Kin on in vitro propagation of white jasmine (Jasminum azoricum L.). J Babylon Univ/pure Appl Sci 24(3):795–802

    Google Scholar 

  • Thomas RL, Jen JJ, Morr CV (1982) Changes in soluble and bound peroxidase—IAA oxidase during tomato fruit development. J Food Sci 47(1):158–161

    Article  Google Scholar 

  • Tang W, Newton RJ, Outhavong V (2004) Exogenously added polyamines recover browning tissues into normal callus cultures and improve plant regeneration in pine. Physiol Plant 122(3):386–395

    Article  CAS  Google Scholar 

  • Vaughn KC, Duke SO (1984) Function of polyphenol oxidase in higher plants. Physiol Plant 60:106–112

    Article  CAS  Google Scholar 

  • Yang Y, He S, Zhang Y, Li X, Liu H, Li Q, Cao X, Ye Y, Sun H (2021) Comparison of crude prolamins from seven kidney beans (Phaseolus vulgaris L.) based on composition, structure and functionality. Food Chem 357:129748

    Article  CAS  PubMed  Google Scholar 

  • Yoruk R, Marshall MR (2003) Physicochemical properties and function of plant polyphenol oxidase: a review. J Food Biochem 27:361–422

    Article  CAS  Google Scholar 

  • Yang CP, Fujita S, Ashrafuzzaman MD, Nakamura N, Hayashi N (2000) Purification and characterization of polyphenol oxidase from banana (musa sapientum l.) pulp. J Agric Food Chem 48(7):2732–2735

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Liu D, Liu C, Yan Z, Yang X, Feng G (2021) In vitro regeneration of Phaseolus vulgaris L via direct and indirect organogenesis. Plant Biotechnol Rep 15(3):279–288

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by Heilongjiang Provincial Natural Science Foundation of China (Grant number LH2020C090)

Author information

Authors and Affiliations

Authors

Contributions

LXX and CL: performed the experiments, analyzed the results and wrote the draft manuscript. DJL: supervised and directed this work and edited the manuscript. ZSY: provided common bean seeds. XXY: and GJF: conceived the project, supervised the research, and reviewed the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Xiaoxu Yang or Guojun Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, L., Liu, C., Liu, D. et al. Optimization of an indirect regeneration system for common bean (Phaseolus vulgaris L.). Plant Biotechnol Rep 17, 821–833 (2023). https://doi.org/10.1007/s11816-023-00830-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-023-00830-z

Keywords

Navigation