Skip to main content
Log in

Improving callus regeneration of Miscanthus × giganteus J.M.Greef, Deuter ex Hodk., Renvoize ‘M161’ callus by inhibition of the phenylpropanoid biosynthetic pathway

  • Plant Tissue Culture
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

In previous studies, the regeneration rates of Miscanthus × giganteus J.M.Greef, Deuter ex Hodk., Renvoize from callus tissue cultured on semi-solid media significantly declined after 4 mo of culture, which presents problems with germplasm conservation and use as an alternative propagation system. Due to the species’ lignocellulosic nature, it was hypothesized that the accumulation of phenolic compounds in the callus may be responsible for inhibiting regeneration. The current study aimed to optimize regeneration of M. × giganteus callus by culturing the callus tissue in the presence of 2-aminoindan-2-phosphonic acid (AIP), a competitive inhibitor of phenylalanine ammonia lyase (PAL), to reduce the biosynthesis of phenolics. Embryogenic callus was cultured on media supplemented with 9.0- or 11.3-μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 0-, 1-, 10-, 100-, or 1000-μM AIP. Every 28 d for 7 mo, the callus tissue was visually classified based on morphology and regeneration rate. Over the duration of the study, regeneration of shoots was consistently highest in callus cultured on 11.3-μM 2,4-D supplemented with 10- and 100-μM AIP (13–58.3%), and in vitro plantlet development from callus cultured on all concentrations of AIP demonstrated tillering and rooting. Total soluble phenolic content of the callus decreased in a dose-dependent manner from 2242.34-μg g−1 dry weight in the control to 1569.71-μg g−1 dry weight in AIP-treated callus. These data indicate that inhibiting PAL in M. × giganteus cultures increased the percentage of calluses exhibiting regeneration over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Březinová A, Holík J, Zažímalová E, Vlasáková V, Malá J (1996) Somatic embryogenesis in oak (Quercus robur L.). Plant Physiol Biochem (spec.issue) Proc.10th FESPP Congress, Florence, Italy, Abstract No. S03-18, p 31

  • Cvikrová M, Binarová P, Eder J, Vágner M, Hrubcová M, Zoń J, Macháčková I (1999) Effect of inhibition of phenylalanine ammonia-lyase activity on growth of alfalfa cell suspension culture: alterations in mitotic index, ethylene production, and contents of phenolics, cytokinins and polyamines. Physiol Plant 107:329–337

    Article  Google Scholar 

  • Cvikrová M, Malá J, Eder J, Hrubcová M, Vágner M (1998) Abscisic acid, polyamines and phenolic acids in sessile oak somatic embryos in relation to their conversion potential. Plant Physiol Biochem 36:247–255

    Article  Google Scholar 

  • Cvikrová M, Malá J, Hrubcová M, Eder J, Zoń J, Macháčková I (2003) Effect of inhibition of biosynthesis of phenylpropanoids on sessile oak somatic embryogenesis. Plant Physiol Biochem 41:251–259

    Article  CAS  Google Scholar 

  • Engbers H, Deen B (2013) Field-scale agricultural biomass research and development project final report. Agriculture and Agri-Food, Canada https://www.ontariosoilcrop.org/wp-content/uploads/2015/11/biomass_final_report-january2014-h.engbers__b.deen.pdf. Accessed 3 Feb 2018

  • Fitch MMM, Moore PH (1990) Comparison of 2,4-D and picloram for selection of long-term totipotent green callus cultures of sugarcane. Plant Cell Tissue Organ Cult 20:157–163

    CAS  Google Scholar 

  • Folin O, Ciocalteu V (1927) On tyrosine and tryptophane determinations in proteins. J Biol Chem 73:627–650

    CAS  Google Scholar 

  • Gairi A, Rashid A (2004) TDZ-induced somatic embryogenesis in non-responsive caryopses of rice using a short treatment with 2,4-D. Plant Cell Tissue Organ Cult 76:29–33

    Article  CAS  Google Scholar 

  • Głowacka K, Balachandran SM, Kaczmarek Z (2010a) Impact of colchicine application during callus induction and shoot regeneration on micropropagation and polyploidisation rates in two Miscanthus species. In Vitro Cell Dev Biol-Plant 46:161–171

    Article  CAS  Google Scholar 

  • Głowacka K, Jezowski S, Kaczmarek Z (2010b) The effects of genotype, inflorescence developmental stage and induction medium on callus induction and plant regeneration in two Miscanthus species. Plant Cell Tissue Organ Cult 102:79–86

    Article  Google Scholar 

  • Gubišová M, Gubiš J, Žofajová A, Mihálik D, Kraic J (2013) Enhanced in vitro propagation of Miscanthus × giganteus. Ind Crop Prod 41:279–282

    Article  CAS  Google Scholar 

  • Heaton EA, Dohleman FG, Long SP (2008) Meeting US biofuel goals with less land: the potential of Miscanthus. Glob Chang Biol 14:2000–2014

    Article  Google Scholar 

  • Heaton EA, Long SP, Voigt TB, Jones MB, Clifton-Brown J (2004) Miscanthus for renewable energy generation: European Union experience and projections for Illinois. Mitig Adapt Start Gl 9:433–451

    Article  Google Scholar 

  • Hodkinson TR, Chase MW, Renvoize SA (2002) Characterization of a genetic resource collection for Miscanthus (Saccharinae, Andropogoneae, Poaceae) using AFLP and ISSR PCR. Ann Bot 89:627–636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hrubcová M, Cvikrová M, Eder J, Zoń J, Macháčková I (2000) Effect of inhibition of phenylpropanoid biosynthesis on peroxidase and IAA-oxidase activities and auxin content in alfalfa suspension cultures. Plant Physiol Biochem 38:949–956

    Article  Google Scholar 

  • Jones AMP, Chattopadhyay A, Shukla M, Zoń J, Saxena PK (2012) Inhibition of phenylpropanoid biosynthesis increases cell wall digestibility, protoplast isolation, and facilitates sustained cell division in American elm (Ulmus americana). BMC Plant Biol 12:75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jones AMP, Saxena PK (2013) Inhibition of phenylpropanoid biosynthesis in Artemisia annua L.: a novel approach to reduce oxidative browning in plant tissue culture. PLoS One 8:e76802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim HS, Zhang G, Juvik JA, Widholm JM (2010) Miscanthus × giganteus plant regeneration: effect of callus types, ages and culture methods on regeneration competence. Glob Change Biol Bioenergy 2:192–200

    Google Scholar 

  • Kim S, Da K, Mei C (2012) An efficient system for high-quality large-scale micropropagation of Miscanthus × giganteus plants. In Vitro Cell Dev Biol-Plant 48:613–619

    Article  Google Scholar 

  • Le Ngoc Huyen T, Rémond C, Dheilly RM, Chabbert B (2010) Effect of harvesting date on the composition and saccharification of Miscanthus × giganteus. Bioresour Technol 101:8224–8231

    Article  PubMed  CAS  Google Scholar 

  • Lewandowski I (1997) Micropropagation of Miscanthus × giganteus. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 39, High-tech and micropropagation Springer, New York, pp 239–255

  • Lewandowski I (1998) Propagation method as an important factor in the growth and development of Miscanthus × giganteus. Ind Crop Prod 8:229–245

    Article  Google Scholar 

  • Liu G, Gilding EK, Godwin ID (2015) A robust tissue culture system for sorghum [Sorghum bicolor (L.) Moench]. S Afr J Bot 98:157–160

    Article  CAS  Google Scholar 

  • Lozovaya V, Gorshkova T, Yablokova E, Zabotina O, Ageeva M, Rumyantseva N, Kolesnichenko E, Waranyuwat A, Widholm J (1996) Callus cell wall phenolics and plant regeneration ability. J Plant Physiol 148:711–717

    Article  CAS  Google Scholar 

  • MacDonald MJ, D’Cunha GBD (2007) A modern view of phenylalanine ammonia lyase. Biochem Cell Biol 85:273–282

    Article  PubMed  CAS  Google Scholar 

  • Malá J, Cvikrová H, Březinová A, Hrubcová M, Eder J, Vágner M, Cvikrová M (2000) Endogenous contents of phytohormones and phenylpropanoids in sessile oak somatic embryos in relation to their conversion potential. J Forest Sci 46:197–204

    Google Scholar 

  • Mehrotra S, Goel MK, Kukreja AK, Mishra BN (2007) Efficiency of liquid culture systems over conventional micropropagation: a progress towards commercialization. Afr J Biotechnol 6:1484–1492

    CAS  Google Scholar 

  • Morrish F, Vasil V, Vasil IK (1987) Developmental morphogenesis and genetic manipulation in tissue and cell cultures of the Gramineae. Adv Genet 24:431–499

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Owaga Y (2015) Long-term maintenance of high regeneration ability of switchgrass embryogenic callus. Plant Biotech 32:1–4

    Article  CAS  Google Scholar 

  • Perera D, Barnes DJ, Baldwin BS, Reichert NA (2015) Mutagenesis of in vitro cultures of Miscanthus × giganteus cultivar freedom and detecting polymorphisms of regenerated plants using ISSR markers. Ind Crop Prod 65:110–116

    Article  CAS  Google Scholar 

  • Petersen KK (1997) Callus induction and plant regeneration in Miscanthus × ogiformis Honda ‘Giganteus’ as influenced by benzyladenine. Plant Cell Tissue Organ Cult 49:137–140

    Article  CAS  Google Scholar 

  • Rambaud C, Arnoult S, Bluteau A, Mansard MC, Blassiau C, Brancourt-Hulmel M (2013) Shoot organogenesis in three Miscanthus species and evaluation for genetic uniformity using AFLP analysis. Plant Cell Tissue Organ Cult 113:437–448

    Article  CAS  Google Scholar 

  • Reuber S, Leitsch J, Krause GH, Weissenböck G (1993) Metabolic reduction of phenylpropanoid compounds in primary leaves of rye (Secale cereale L.) leads to increased UV-B sensitivity of photosynthesis. Z Naturforsch 48:749–756

    Article  CAS  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol 299:152–178

    Article  CAS  Google Scholar 

  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  • Ślusarkiewicz-Jarzina A, Ponitka A, Cerazy-Waliszewska J, Wojciechowicz MK, Sobańska K, Jeżowski S, Pniewski T (2017) Effective and simple in vitro regeneration system of Miscanthus sinensis, M. × giganteus and M. sacchariflorus for planting and biotechnology purposes. Biomass Bioenergy 107:219–226

    Article  CAS  Google Scholar 

  • Taşkın H, Baktemur G, Kurul M, Büyükalaca S (2013) Use of tissue culture techniques for producing virus-free plant in garlic and their identification through real-time PCR. Sci World J 2013:1–5

  • Tejera MD, Heaton EA (2017) Description and codification of Miscanthus × giganteus growth stages for phenological assessment. Front Plant Sci 8:1–12

    Article  Google Scholar 

  • Vasil IK, Vasil V (1994) In vitro culture of cereals and grasses. In: Vasil IK, Thrope TA (eds) Plant cell and tissue culture. Kluwer Academic Publishers, Dordrecht, Netherlands, pp 293–312

    Chapter  Google Scholar 

  • Viana AM, Mantell SH (1998) Comparative uptake and metabolism of 2-[14C]-2,4-dichlorophenoxyacetic acid in callus cultures of monocot (Dioscorea spp.) and dicot (Nicotiana tabacum L.) plants. Braz J Bot 21:89–99

    CAS  Google Scholar 

  • Vreugdenhil D, Boogaard Y, Visser RGF, de Bruijn SM (1998) Comparison of tuber and shoot formation from in vitro cultured potato explants. Plant Cell Tissue Organ Cult 53:197–204

    Article  CAS  Google Scholar 

  • Withers KK (2015) Morphological adaptations and membrane stabilizing mechanisms of overwintering Miscanthus (Poaceae). Unpublished thesis. University of Guelph, Guelph, ON, Canada http://atrium.lib.uoguelph.ca/xmlui/handle/10214/8708. Accessed 4 Oct 2017

  • Xue S, Kalinina O, Lewandowski I (2015) Present and future options for Miscanthus propagation and establishment. Renew Sust Energ Rev 49:1233–1246

    Article  Google Scholar 

  • Zaid A (1987) In vitro browning of tissues and media with special emphasis to date palm cultures—a review. Acta Hortic 212:561–566

    Article  Google Scholar 

  • Zawadzki M, Ragauskas A (1999) Quantitative determination of quinone chromophores in isolated lignins. IPST Technical Paper Series Number 815:1–28

Download references

Acknowledgements

The authors wish to thank Abhishek Chattopadhyay for training and assistance with determining the soluble phenolic content of the samples, All Weather Farming Inc. for supplying explant material, and Dr. Michelle Edwards for aiding with statistical analyses.

Funding

The authors are also grateful for the funding partner BioFuelNet for financially supporting this research. The funders had no role in the design of the study, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Maxwell Phineas Jones.

Additional information

Editor: Jessica Rupp

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Downey, C.D., Zoń, J. & Jones, A.M.P. Improving callus regeneration of Miscanthus × giganteus J.M.Greef, Deuter ex Hodk., Renvoize ‘M161’ callus by inhibition of the phenylpropanoid biosynthetic pathway. In Vitro Cell.Dev.Biol.-Plant 55, 109–120 (2019). https://doi.org/10.1007/s11627-018-09957-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-018-09957-z

Keywords

Navigation