Skip to main content
Log in

Optimized Microemulsion Systems for Detergency of Vegetable Oils at Low Surfactant Concentration and Bath Temperature

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

Triglycerides and vegetable oils are amongst the most difficult oils to remove from fabrics due to their highly hydrophobic nature; this is all the more challenging as cold water detergency is pursued in the interest of energy efficiency. Recently, extended surfactants have produced very encouraging detergency performance at ambient temperature, especially at low surfactant concentration. However, the salinity requirement for extended surfactants was excessive (4–14%) and there is limited research on extended-surfactant-based microemulsions for cold water detergency (below 25 °C). Therefore, extended-surfactant-based microemulsions are introduced in this study for cold temperature detergency of vegetable oils with promising salinity and surfactant concentration. The overall goal of this study is to explore the optimized microemulsion formulations with low surfactant and salt concentration using extended surfactant for canola oil detergency at both 25 and 10 °C. It was found that microemulsion systems achieved good performances (higher than those of commercial detergents) corresponding to IFT value 0.1–1 mN/m with the surfactant concentration as low as 10 ppm and 4% NaCl at 25 °C, and as low as 250 ppm and 0.1% (1000 ppm) NaCl at 10 °C. In addition, microemulsion systems were investigated with a different salt (CaCl2, or water hardness, versus NaCl) at 10 °C, demonstrating that 0.025% CaCl2 (250 ppm) can produce good detergency; this is in the hardness range of natural water. These results provide qualitative guidance for microemulsion formulations of vegetable oil detergency and for future design of energy-efficient microemulsion systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Farn RJ. Chemistry and technology of surfactants. Oxford: Blackwell; 2006.

    Book  Google Scholar 

  2. Raney KH, Benson HL. The effect of polar soil components on the phase inversion temperature and optimum detergency conditions. J Am Oil Chem Soc. 1990;67(11):722–9.

    Article  CAS  Google Scholar 

  3. Miller CA, Raney KH. Solubilization-emulsification mechanisms of detergency. Colloids Surf A. 1993;74(2):169–215.

    Article  CAS  Google Scholar 

  4. Rosen MJ. Surfactants and interfacial phenomena. 3ed ed. New York: Wiley; 2004.

    Book  Google Scholar 

  5. Showell MS. Handbook of detergents, part D: formulations 128. Boca Raton: Taylor & Francis; 2006.

    Google Scholar 

  6. Hillyer HW. A study of soap solutions. J Am Chem Soc. 1903;25(5):524–32.

    Article  CAS  Google Scholar 

  7. Adam NK, Stevenson DG. Detergent Action. Endeavour. 1953;12:25–32.

    CAS  Google Scholar 

  8. Mori F, Lim JC, Raney OG, Elsik CM, Miller CA. Phase behavior, dynamic contacting and detergency in systems containing triolein and nonionic surfactants. Colloids Surf. 1989;40:323–45.

    Article  CAS  Google Scholar 

  9. Thompson L. The role of oil detachment mechanisms in determining optimum detergency conditions. J Colloid Interface Sci. 1994;163(1):61–73.

    Article  CAS  Google Scholar 

  10. Tongcumpou C, Acosta EJ, Scamehorn JF, Sabatini DA, Yanumet N, Chavadej S. Enhanced triolein removal using microemulsions formulated with mixed surfactants. J Surfact Deterg. 2006;9(2):181–9.

    Article  CAS  Google Scholar 

  11. Tanthakit P, Ratchatawetchakul P, Chavadej S, Scamehorn JF, Sabatini DA, Tongcumpou C. Palm oil removal from fabric using microemulsion-based formulations. J Surfact Deterg. 2010;13(4):485–95.

    Article  CAS  Google Scholar 

  12. Salager J-L, Graciaa A, Lachaise J. Improving solubilization in microemulsions with additives. Part III: lipophilic linker optimization. J Surfact Deterg. 1998;1(3):403–6.

    Article  CAS  Google Scholar 

  13. Acosta E, Uchiyama H, Sabatini DA, Harwell JH. The role of hydrophilic linkers. J Surfact Deterg. 2002;5(2):151–7.

    Article  CAS  Google Scholar 

  14. Acosta E, Tran S, Uchiyama H, Sabatini DA, Harwell JH. Formulating chlorinated hydrocarbon microemulsions using linker molecules. Environ Sci Technol. 2002;36(21):4618–24.

    Article  Google Scholar 

  15. Tongcumpou C, Acosta EJ, Quencer LB, Joseph AF, Scamehorn JF, Sabatini DA, Chavadej S, Yanumet N. Microemulsion formation and detergency with oily soils: I. Phase behavior and interfacial tension. J Surfact Deterg. 2003;6(3):191–203.

    Article  CAS  Google Scholar 

  16. Salager JL, Anton RE, Sabatini DA, Harwell JH, Acosta EJ, Tolosa LI. Enhancing solubilization in microemulsions—state of the art and current trends. J Surfact Deterg. 2005;8:3–21.

    Article  CAS  Google Scholar 

  17. Miñana-Perez M, Graciaa A, Lachaise J, Salager J-L. Solubilization of polar oils with extended surfactants. Colloids Surf A. 1995;100:217–24.

    Article  Google Scholar 

  18. Miñana-Pérez M, Graciaa A, Lachaise J, Salager J-L. Solubilization of polar oils in microemulsion systems. In: Appell J, Porte G (ed) Trends in colloid and interface science, 9th edn. Darmstadt, Steinkopff, 1995; p 177–179.

  19. Witthayapanyanon A, Harwell JH, Sabatini DA. Hydrophilic–lipophilic deviation (HLD) method for characterizing conventional and extended surfactants. J Colloid Interface Sci. 2008;325(1):259–66.

    Article  CAS  Google Scholar 

  20. Do LD, Withayyapayanon A, Harwell JH, Sabatini DA. Environmentally friendly vegetable oil microemulsions using extended surfactants and linkers. J Surfact Deterg. 2009;12(2):91–9.

    Article  CAS  Google Scholar 

  21. Phan TT, Attaphong C, Sabatini DA. Effect of extended surfactant structure on interfacial tension and microemulsion formation with triglycerides. J Am Oil Chem Soc. 2011;88(8):1223–8.

    Article  CAS  Google Scholar 

  22. Phan TT, Witthayapanyanon A, Harwell JH, Sabatini DA. Microemulsion-based vegetable oil detergency using an extended surfactant. J Surfact Deterg. 2010;13(3):313–9.

    Article  CAS  Google Scholar 

  23. Do LD, Attaphong C, Scamehorn JF, Sabatini DA. Detergency of vegetable oils and semi-solid fats using microemulsion mixtures of anionic extended surfactants: the HLD concept and cold water applications. J Surfact Deterg. 2015;18(3):373–82.

    Article  CAS  Google Scholar 

  24. International Association for Soaps, Detergents and Maintenance products (AISE). The case for the “A.I.S.E. low temperature washing” initiative. In: An initiative from the detergent industry to promote low temperature washing. 2013. https://www.iprefer30.eu/component/attachments/attachments?task=download&id=239. Accessed Apr 2016.

  25. Matson TP, Cox MF. An approach to formulating cold-water laundry products. J Am Oil Chem Soc. 1984;61(7):1270–2.

    Article  CAS  Google Scholar 

  26. Cox MF, Matson TP. The selection of surfactants for specific household applications. J Am Oil Chem Soc. 1983;60(6):1170–4.

    Article  CAS  Google Scholar 

  27. Laitala K, Jensen HM. Cleaning effect of household laundry detergents at low temperatures. Tenside Surfact Det. 2010;47(6):413–20.

    Article  CAS  Google Scholar 

  28. Dreja M, Vockenroth I, Plath N, Schneider C, Martinez E. Formulation, performance and sustainability aspects of liquid laundry detergents. Tenside Surfact Det. 2014;51(2):108–12.

    Article  CAS  Google Scholar 

  29. Witthayapanyanon A, Acosta EJ, Harwell JH, Sabatini DA. Formulation of ultralow interfacial tension systems using extended surfactants. J Surfact Deterg. 2006;9(4):331–9.

    Article  CAS  Google Scholar 

  30. Sammalkorpi M, Karttunen M, Haataja M. Ionic surfactant aggregates in saline solutions: sodium dodecyl sulfate (SDS) in the presence of excess sodium chloride (NaCl) or calcium chloride (CaCl2). J Phys Chem B. 2009;113(17):5863–70.

    Article  CAS  Google Scholar 

  31. Wurts WA, Durborow RM. Interactions of pH, carbon dioxide, alkalinity and hardness in fish ponds. Southern Regional Aquaculture Center (SRAC), publication No. 464. 1992. http://www2.ca.uky.edu/wkrec/interactionsphetc.pdf. Accessed May 2016.

Download references

Acknowledgements

The authors would like to thank Thu Nguyen, Geoff Russell, and Victoria Stolarski from Sasol North America (Lake Charles, LA) for providing the extended surfactant samples. Funding for this work was provided by industrial sponsors of the Institute for Applied Surfactant Research at the University of Oklahoma: CESI Chemical Research, Church and Dwight, Clorox, Ecolab, Haliburton, Huntsman, Ingevity, Novus, Procter and Gamble, Sasol North America, S. C. Johnson & Son and Shell Chemical.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chodchanok Attaphong.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attaphong, C., Sabatini, D.A. Optimized Microemulsion Systems for Detergency of Vegetable Oils at Low Surfactant Concentration and Bath Temperature. J Surfact Deterg 20, 805–813 (2017). https://doi.org/10.1007/s11743-017-1962-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-017-1962-8

Keywords

Navigation