Skip to main content
Log in

Enhancing solubilization in microemulsions—State of the art and current trends

  • Feature
  • Published:
Journal of Surfactants and Detergents

Abstract

Along a formulation scan, solubilization is maximal when a bicontinuous microemulsion is in equilibrium with both oil and water excess phases in a so-called Winsor III system. The logical way to enhance solubilization is to increase the interaction of the surfactant for both the oil and water phases, which can be easily attained by increasing the size of both the head and tail groups. However, this approach is limited by solubility constraints. Additional solubilization enhancement can be attained by introducing a molecule(s) that bridge the bulk phase and the adsorbed surfactant layer; this can be accomplished by using the so-called lipophilic and hydrophilic “linker effect” or by using block copolymer additives. In either case, the goal is to modify an extended zone in the oil and water domains close to their boundary. The intramolecular grafting of a linker group between the hydrophilic and lipophilic moieties in a surfactant results in a so-called “extended” surfactant structure, which produces enhanced solubilization, as does the surfactant/linker combination, but with the added benefit that the self-contained extended surfactant structure does not undergo selective partitioning. We conclude that an improvement in solubilization is directly related to the presence of a smooth, blurred, and expanded transition across the interfacial region from polar to apolar bulk phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACN:

alkane carbon number

EO:

ethylene oxide

EON:

ethylene oxide number

EOR:

enhanced oil recovery

HLB:

hydrophilic-lipophilic balance

HLD:

hydrophilic-lipophilic deviation

LC:

liquid crystals

OW:

oil/water

S+A:

surfactant+alcohol

SAD:

surface affinity difference

SAOW:

surfactant-alcohol-oil-water

SOW:

surfactant-oil-water

WOR:

water-to-oil ratio

References

  1. Prince, L.M. (ed.), Microemulsions—Theory and Practice, Academic Press, New York, 1977.

    Google Scholar 

  2. Robb, I.D., (ed.), Microemulsions, Plenum Press, New York, 1977.

    Google Scholar 

  3. Mittal, K.L. (ed.), Micellization, Solubilization and Microemulsions, Plenum Press, New York, 1977.

    Google Scholar 

  4. Mittal, K.L. (ed.), Solution Chemistry of Surfactants, Plenum Press, New York, 1979.

    Google Scholar 

  5. Chattopadhay, A.K., and K.L. Mittal, Surfactants in Solutions, Marcel Dekker, New York, 1996.

    Google Scholar 

  6. Solans, C., and H. Kunieda, (eds.), Industrial Applications of Microemulsons, Marcel Dekker, New York, 1997.

    Google Scholar 

  7. Kumar, P., and K.L. Mittal (eds.), Handbook of Microemulsion Science and Technology, Marcel Dekker, New York, 1999.

    Google Scholar 

  8. Bourrel, M., and R.S. Schechter, Microemulsions and Related Systems, Marcel Dekker, New York, 1988.

    Google Scholar 

  9. Langevin, D., Microemulsions and Liquid Crystals, Mol. Cryst. Liq. Cryst. 138:259 (1986).

    CAS  Google Scholar 

  10. Shinoda, K., and B. Lindman, Organized Surfactant Systems: Microemulsions, Langmuir 3:135 (1989).

    Article  Google Scholar 

  11. Kahlweit, M., R. Strey, and G. Busse, Microemulsions: A Quantitative Thermodynamic Approach, J. Phys. Chem. 94:3881 (1990).

    Article  CAS  Google Scholar 

  12. Salager, J.L., Microemulsions, in Handbook of Detergents—Part A: Properties, edited by G. Broze, Marcel Dekker, New York, 1999, p. 253.

    Google Scholar 

  13. Hoar, T.P., and J.H. Schulman, Transparent Water-in-Oil Dispersions: The Oleopathic Hydro-micelle, Nature 152:102 (1943).

    CAS  Google Scholar 

  14. Acosta, E., Modeling and Formulation of Microemulsions: The Net-Average Curvature Model and the Combined Linker Effect, Ph.D. Dissertation, University of Oklahoma, Norman, 2004.

    Google Scholar 

  15. Salager, J.L., and R.E. Antón, Ionic Microemulsions, in Handbook of Microemulsion Science and Technology, edited by P. Kumar and K.L. Mittal, Marcel Dekker, New York, 1999, p. 247.

    Google Scholar 

  16. Winsor, P., Solvent Properties of Amphiphilic Compounds, Butterworth, London, 1954.

    Google Scholar 

  17. Scriven, S., Equilibrium Bicontinuous Structure, Nature 263:123 (1976).

    Article  CAS  Google Scholar 

  18. Clausse, M., J. Peyrelasse, J. Heil, C. Boned, and B. Lagourette, Bicontinuous Structures in Microemulsions, Nature 293:636 (1981).

    Article  CAS  Google Scholar 

  19. Auvray, L., J.P. Cotton, R. Ober, and C. Taupin, Evidence for Zero Mean Curvature Microemulsions, J. Phys. Chem. 88:4586 (1984).

    Article  CAS  Google Scholar 

  20. Blom, C., and J. Mellema, The Rheological Behavior of a Microemulsion in the Three-Phase Region, J. Dispersion Sci. Technol. 5:193 (1984).

    CAS  Google Scholar 

  21. Shah, D.O., and R.S. Schechter (eds.), Improved Oil Recovery by Surfactant and Polymer Flooding, Academic Press, New York, 1977.

    Google Scholar 

  22. Lang, J.C., and B. Widom, Equilibrium of Three Liquid Phases and Approach to the Tricritical Point in Benzene, Ethanol, Water, Ammonium Sulfate Mixtures, Physica 81A:190 (1975).

    CAS  Google Scholar 

  23. Reed, R.L., and R.N. Healy, Some Physico-chemical Aspects of Microemulsion Flooding: A Review, in Improved Oil Recovery by Surfactant and Polymer Flooding, edited by D.O. Shah, and R.S. Schechter, Academic Press, New York, 1977, p. 383.

    Google Scholar 

  24. Salager, J.L., Quantifying the Concept of Physico-chemical Formulation in Surfactant-Oil-Water Systems, Progr. Colloid Polym. Sci. 100:137 (1996).

    Article  CAS  Google Scholar 

  25. Griffin, W.C., Classification of Surface Active Agents by HLB, J. Soc. Cosm. Chem. 1:311 (1949).

    Google Scholar 

  26. Shinoda, K., and H. Arai, The Correlation Between PIT in Emulsion and Cloud Point in Solution of Nonionic Emulsifier, J. Phys. Chem. 68:3485 (1964).

    CAS  Google Scholar 

  27. Shinoda, K., and H. Saito, The Effect of Temperature on the Phase Equilibria and the Types of Dispersions of the Ternary System Composed of Water, Cyclohexane and Nonionic Surfactant, J. Colloid Interface Sci. 26:70 (1968).

    Article  CAS  Google Scholar 

  28. Beerbower, A., and M. Hill, The Cohesive Energy Ratio of Emulsions—A Fundamental Basis for the HLB Concept, in McCutcheon's Detergents and Emulsifiers, Allured Publishing, Carol Stream, IL, 1971, p. 223.

    Google Scholar 

  29. Bennet, K., C. Phelps, H.T. Davis, and L.E. Scriven, Microemulsion Phase Behavior: Observation, Thermodynamic Essentials, Mathematical Simulation, Soc. Petrol. Eng. J. 21:747 (1981).

    Google Scholar 

  30. Noronha, J.C., and D.O. Shah, Ultralow Interfacial Tension, Phase Behavior and Microstructure in Oil/Brine/Surfactant/ Alcohol Systems, AIChE Symp. Ser. 212, Vol. 78:42 (1982).

    CAS  Google Scholar 

  31. Salager, J.L., J. Morgan, R.S. Schechter, W.H. Wade, and E. Vasquez, Optimum Formulation of Surfactant-Oil-Water Systems for Minimum Tension and Phase Behavior, Soc. Petrol. Eng. J. 19:107 (1979).

    Google Scholar 

  32. Antón, R.E., N. Garcés, and A. Yajure, A Correlation for Three-Phase Behavior of Cationic Surfactant-Oil-Water Systems, J. Dispersion Sci. Technol. 18:539 (1997).

    Google Scholar 

  33. Bourrel, M., J.L. Salager, R.S. Schechter, and W.H. Wade, A Correlation for Phase Behavior of Nonionic Surfactants, J. Colloid Interface Sci. 75:451 (1980).

    Article  CAS  Google Scholar 

  34. Davies, J.T., A Quantitative Kinetic Theory the Emulsion Type. I. Physical Chemistry of the Emulsifying Agent, in Gas/Liquid and Liquid/Liquid Interfaces, Proceedings of the Second International Congress on Surface Activity, Butterworth, London, 1957, Vol. 1, p. 426.

    Google Scholar 

  35. Salager, J.L., N. Márquez, A. Graciaa, and J. Lachaise, Partitioning of Ethoxylated Octylphenol Surfactants in Microemulsion-Oil-Water Systems. Influence of Temperature and Relation Between Partitioning Coefficient and Physicochemical Formulation, Langmuir 16:5534 (2000).

    Article  CAS  Google Scholar 

  36. Márquez, N., R.E. Antón, A. Graciaa, J. Lachaise, and J.L. Salager, Partitioning of Ethoxylated Alkyl Phenol Surfactants in Microemulsion-Oil-Water Systems, Colloids Surfaces A 100:225 (1995).

    Article  Google Scholar 

  37. Márquez, N., A. Graciaa, J. Lachaise, and J.L. Salager, Partitioning of Ethoxylated Alkylphenol Surfactants in Microemulsion-Oil-Water Systems: Influence of Physicochemical Formulation Variables, Langmuir 18:6021 (2002).

    Article  CAS  Google Scholar 

  38. Salager, J.L., R.E. Antón, J.M. Andérez, and J.M. Aubry, Formulation des microémulsions par la méthode du HLD, Techniques de l'Ingénieur, Génie des Procédés, Vol. J2, edited by J.C. Charpentier, paper Ref. #J2 157, Techniques de l'Ingénieur, Paris, 2001 p. 1 (in French).

    Google Scholar 

  39. Skauge, A., and P. Fotland, Effect of Temperature and Pressure on the Phase Behavior of Microemulsions, SPE Reservior Eng. 5:601 (1990).

    CAS  Google Scholar 

  40. Acosta, E., E. Szekeres, D.A. Sabatini, and J.H. Harwell, Net-Average Curvature Model for Solubilization and Supersolubilization in Surfactant Microemulsions, Langmuir 19:186 (2003).

    Article  CAS  Google Scholar 

  41. Lim, K.-H., J.-M. Lee, and D.H. Smith, Description of Phase and Emulsion Inversion Behavior for the Ethanol/Benzene/ Water System by the Bancroft-Hand Transformation and Critical Scaling Theory, Langmuir 18:6003 (2002)

    Article  CAS  Google Scholar 

  42. Smith, D.H., and K.H. Lim, Morphology and Inversion of Dispersions of Two Fluids in Systems of Three and Four Thermodynamic Dimensions, J. Phys Chem. 94:3746 (1990).

    Article  CAS  Google Scholar 

  43. Kahlweit, M., E. Lessner, and R. Strey, Influence of the Properties of the Oil and Surfactant on the Phase Behavior of Systems of the Type H2O-Oil-Nonionic Surfactant, J. Phys. Chem. 87:5032 (1983).

    Article  CAS  Google Scholar 

  44. Rudolph, E.S.J., M.A. Caçai Pedroso, T.W. de Loos, and J. de Swaan Arons, Phase Behavior of Oil+Water+Nonionic Surfactant Systems for Various Oil-to-Water Ratios and the Representation by a Landau-type Model, J. Phys. Chem. B. 101:3914 (1997).

    Article  CAS  Google Scholar 

  45. Kahlweit, M., R. Strey, and P. Firman, Search for Tricritical Points in Ternary Systems: Water-Oil-Nonionic Amphiphiles, J. Phys. Chem. 90:671 (1986)

    Article  CAS  Google Scholar 

  46. Smith, D.H., and K.H. Lim, History and Status of the Emulsion Morphology Diagram for Two- and Three-Phase Emulsions, J. End. Eng. Chem. 6:201 (2000).

    CAS  Google Scholar 

  47. Shinoda, K. (ed.), Solvent Properties of Surfactant Solutions, Marcel Dekker, New York, 1967.

    Google Scholar 

  48. Graciaa, A., J. Lachaise, J.G. Sayous, P. Grenier, S. Yiv, R.S. Schechter, and W.H. Wade, The Partitioning of Complex Surfactant Mixtures Between Oil-Water-Microemulsion Phases at High Surfactant Concentration, J. Colloid Interface Sci. 93:474 (1983).

    Article  CAS  Google Scholar 

  49. Kunieda, H., and K. Shinoda, Evaluation of the Hydrophile-Lipophile Balance of Nonionic Surfactants—I. Multisurfactant Systems, J. Colloid Interface Sci. 107:107 (1985).

    Article  CAS  Google Scholar 

  50. Kunieda, H., K. Hanno, S. Yamaguchi, and K. Shinoda, The Three-Phase Behavior of a Brine/Ionic Surfactant/Nonionic Surfactant/Oil System: Evaluation of the Hydrophile-Lipophile Balance of the Ionic Surfactant, J. Colloid Interface Sci. 107:129 (1985).

    Article  CAS  Google Scholar 

  51. Graciaa, A., J. Lachaise, M. Bourrel, I. Osborne-Lee, R.S. Schechter, and W.H. Wade, Partitioning of Nonionic and Anionic Surfactant Mixtures Between Oil/Microemulsion/Water Phases, SPE Reservoir Eng. 2:305 (1987).

    CAS  Google Scholar 

  52. Bourrel, M., C. Chambu, R.S. Schechter, and W.H. Wade, The Topology of Phase Boundaries for Oil-Brine-Surfactant Systems and Its Relationship to Oil Recovery, Soc. Petrol. Eng. J. 22:28 (1982).

    CAS  Google Scholar 

  53. Huh, C., Interfacial Tensions and Solubilizing Ability of a Microemulsion Phase That Coexists with Oil and Brine, J. Colloid Interface Sci. 71:408 (1979).

    Article  CAS  Google Scholar 

  54. Huh, C., Equilibrium of a Microemulsion That Coexists with Oil and Water, Soc. Petrol. Eng. J. 23:829 (1983).

    CAS  Google Scholar 

  55. Salager, J.L., Phase Transformation and Emulsion Inversion on the Basis of Catastrophe Theory, in Encyclopedia of Emulsion Technology, edited by P. Becher, Marcel Dekker, New York, 1988, Vol. 3, p. 79.

    Google Scholar 

  56. Aveyard, R., B.P. Binks, S. Clark, P.D.I. Fletcher, H. Giddings, P.A. Kingston, and A. Pitt, Surface Chemistry and Microemulsion Formation in Oil-Water Systems Containing Sodium Tri-n-alkylsulfotricarballylates, Colloids Surf. 59:97 (1991).

    Article  CAS  Google Scholar 

  57. Acosta, E., S. Tran, H. Uchiyama, D. Sabatini, and J.H. Harwell, Formulating Chlorinated Hydrocarbon Microemulsions Using Linker Molecules, Environ. Sci. Technol. 36:4618 (2002).

    Article  Google Scholar 

  58. Bourrel, M., J.L. Salager, R.S. Schechter, and W.H. Wade, Properties of Amphiphile-Oil-Water Systems at Optimum Formulation for Phase Behavior, paper SPE 7450, Preprints of the 53rd Annual Fall Technical Conference of the Society of Petroleum Engineers, Houston, October 1978.

  59. Bourrel, M., C. Chambu, and F. Verzaro, Mécanismes de la solubilisation en microémulsion. Effets des conditions de formulation, in Proceedings of the Second European Symposium on Enhanced Oil Recovery (Paris, November 8–10, 1982), Technip, Paris, 1982.

    Google Scholar 

  60. Barakat, Y., L.N. Fortney, R.S. Schechter, W.H. Wade, S. Yiv, and A. Garciaa, Criteria for Structuring Surfactants to Maximize Solubilization of Oil and Water. Part 2—Alkyl Benzene Sodium Sulfonates, J. Colloid Interface Sci. 92:561 (1983).

    Article  CAS  Google Scholar 

  61. Verkruyse, L.A., and S.J.Salter, Potential Use of Nonionic Surfactants in Micellar Flooding, Paper SPE 13574, International Symposium on Oilfield and Geothermal Chemistry, Phoenix, April 9–11, 1985.

  62. Kunieda, H., and K. Shinoda, Correlation Between Critical Solution Phenomena and Ultralow Interfacial Tensions in a Surfactant/Water/Oil System, Bull. Soc. Chem. Japan 55:1777 (1982).

    Article  CAS  Google Scholar 

  63. Graciaa, A., L.N. Fortney, R.S. Shechter, W.H. Wade, and S. Yiv, Criteria for Structuring Surfactants to Maximize Solubilization of Oil and Water: Part 1—Commercial Nonionics, Soc. Petrol. Eng. J. 22:743 (1982).

    CAS  Google Scholar 

  64. Sunwoo, C.K., and W.H. Wade, Optimal Surfactant Structures for Co-surfactant-free Microemulsion Systems. 1. C16 and C14 Guerbet Alcohol Hydrophobes, J. Dispersion Sci. Technol. 13:491 (1992).

    CAS  Google Scholar 

  65. Lipow, A., M. Bourrel, R.S. Schechter, and W.H. Wade, Ultralow Interfacial Tension, Phase Behavior and Oil Recovery, American Institute of Chemical Engineers meeting, Houston, April 1979.

  66. Doe, P.H., W.H. Wade, and R.S. Schechter, Alkyl Benzene Sulfonates for Producing Low Interfacial Tensions Between Hydrocarbons and Water, J. Colloid Interface Sci. 59:525 (1977).

    Article  CAS  Google Scholar 

  67. Morgan, J., R.S. Schechter, and W.H. Wade, Recent Advances in the Study of Low Interfacial Tensions, in Improved Oil Recovery by Surfactant and Polymer Flooding, edited by D.O. Shah and R.S. Schechter, Academic Press, New York, 1977, p. 109.

    Google Scholar 

  68. Barakat, Y., L.N. Fortney, R.S. Schechter, W.H. Wade, S. Yiv, and A. Graciaa, Criteria for Structuring Surfactants to Maximize Solubilization of Oil and Water. Part 2—Alkyl Benzene Sodium Sulfonates, J. Colloid Interface Sci. 92:561 (1983).

    Article  CAS  Google Scholar 

  69. Bourrel, M., F. Verzaro, and C. Chambu, Effect of Oil Type on Solubilization by Amphiphiles, SPE Reservoir Eng. 2:41 (1987).

    CAS  Google Scholar 

  70. Hyde, S.T., Interfacial Architecture in Surfactant-Water Mixtures: Beyond Spheres, Cylinders and Planes, Pure Appl. Chem. 64:1617 (1992).

    CAS  Google Scholar 

  71. Bourrel, M., and C. Chambu, The Rules for Achieving High Solubilization of Brine and Oil by Amphiphilic Molecules, Soc. Petrol. Eng. J. 23:327 (1983).

    CAS  Google Scholar 

  72. Hayes, M., M. El-Emary, M. Bourrel, R.S. Schechter, and W.H. Wade, Interfacial Tension and Phase Behavior of Nonionic Surfactants, Soc. Petrol. Eng. J. 19:349 (1978).

    Google Scholar 

  73. Bavière, M., R.S. Schechter, and W.H. Wade, The Influence of Alcohol on Microemulsion Composition, J. Colloid Interface Sci. 81:266 (1981).

    Article  Google Scholar 

  74. Jones, S.C., and K.D. Dreher, Co-surfactants in Micellar Systems Used for Tertiary Oil Recovery, Soc. Petrol. Eng. J. 16:161 (1976).

    CAS  Google Scholar 

  75. Lohateerparp, P., P. Wilairuengsuwan, C. Saiwan, D.A. Sabatini, and J.H. Harwell, Study of Alcohol-free Microemulsion Systems Containing Fatty Acid as Co-surfactants, J. Surfact. Deterg. 6:15 (2003).

    Google Scholar 

  76. Asgharian, N., P. Otken, C. Sunwoo, and W.H. Wade, Synthesis and Performance of High-Efficiency Co-surfactants: Model Systems, Langmuir 7:2904 (1991).

    Article  CAS  Google Scholar 

  77. Asgharian, N., P. Otken, C. Sunwoo, and W.H. Wade, Synthesis and Performance of High-Efficiency Co-surfactants: Commercial Variants, J. Dispersion Sci. Technol. 13:515 (1992).

    CAS  Google Scholar 

  78. Kahlweit, M., R. Strey, and G. Busse, Effect of Alcohol on the Phase Behavior of Microemulsions, J. Phys. Chem. 95:5344 (1991).

    Article  CAS  Google Scholar 

  79. Lalanne-Cassou, C., I. Carmona, L. Fortney, A. Samii, R.S. Schechter, W.H. Wade, and V. Weerasooriya, Minimizing Cosolvent Requirements for Microemulsion Formed with Binary Surfactant Mixtures, J. Dispersion Sci. Technol. 8:137 (1987).

    CAS  Google Scholar 

  80. Doan, T., E. Acosta, J.F. Scamehorn, and D.A. Sabatini, Formulating Middle-Phase Microemulsions Using Mixed Anionic and Cationic Surfactant Systems, J. Surfact. Deterg. 6:215 (2003).

    Article  Google Scholar 

  81. Guerrero, M.L., and J.S. Rowlinson, Model Fluid Mixture Which Exhibits Tricritical Points. Part 1, J. Chem. Soc. Faraday Trans. 2 72:1970 (1976).

    Article  CAS  Google Scholar 

  82. Desrosiers, N., M.L. Guerrero, J.S. Rowlinson, and D. Stubley, Model Fluid Mixture Which Exhibits Tricritical Points. Part 2, J. Chem. Soc. Faraday Trans. 2 73:1632 (1977).

    Article  CAS  Google Scholar 

  83. Bellocq, A.M., J. Biais, B. Clin, A. Gelot, P. Lalanne, and B. Lemanceau, Three-Dimensional Phase Diagram of the Brine-Toluene-Butanol-Sodium Dodecylsulfate Systems, J. Colloid Interface Sci. 74:311 (1980).

    Article  CAS  Google Scholar 

  84. Sabatini, D.A., E.J. Acosta, and J.H. Harwell, Linker Molecules in Surfactant Mixtures, Curr. Opin. Colloid Interface Sci. 8:316 (2003).

    Article  CAS  Google Scholar 

  85. Graciaa, A., J. Lachaise, C. Cucuphat, M. Bourrel, and J.L. Salager, Improving Solubilization in Microemulsions with Additives—1: The Lipophilic Linker Role, Langmuir 9:669 (1993).

    Article  CAS  Google Scholar 

  86. Graciaa, A., J. Lachaise, C. Cucuphat, M. Bourrel, and J.L. Salager, Improving Solubilization in Microemulsions with Additives—Part II: Long-Chain Alcohol as Lipophilic Linkers, Langmuir 9:3371 (1993).

    Article  CAS  Google Scholar 

  87. Salager, J.L., A. Graciaa, and J. Lachaise, Improving Solubilization in Microemulsions with Additives. Part III: Optimization of the Lipophilic Linker, J. Surfact. Deterg. 1:403 (1998).

    CAS  Google Scholar 

  88. Graciaa, A., J. Lachaise, C. Cucuphat, M. Bourrel, and J.L. Salager, Interfacial Segregation of Ethyl Oleate/Hexadecane Oil Mixture in Microemulsion Systems, Langmuir 9: 1473 (1993).

    Article  CAS  Google Scholar 

  89. Uchiyama, H., E. Acosta, S. Tran, D.A. Sabatini, and J.H. Harwell, Supersolubilization in Chlorinated Hydrocarbon Microemulsions. Solubilization Enhanced by Lipophilic and Hydrophilic Linkers, Ind. Eng. Chem. Res. 39:2704 (2000).

    Article  CAS  Google Scholar 

  90. Acosta, E., H. Uchiyama, D.A. Sabatini, and J. Harwell, The Role of Hydrophilic Linkers, J. Surfact. Deterg. 5:151 (2002).

    CAS  Google Scholar 

  91. Acosta, E., P. Do, J.H. Harwell, and D.A. Sabatini, Linker-Modified Microemulsions for a Variety of Oils and Surfactants, J. Surfact. Deterg. 6:353 (2003).

    Article  CAS  Google Scholar 

  92. Acosta, E., T. Nguyen, J.H. Harwell, and D.A. Sabatini, Linker-based Lecithin Microemulsions, J. Environ. Sci. Technol. 39(5), in press.

  93. Acosta, E., M. Le, J.H. Harwell, and D.A. Sabatini, Coalescence and Solubilization Kinetics in Linker-Modified Microemulsions and Related Systems, Langmuir 19:566 (2003).

    Article  CAS  Google Scholar 

  94. Jakobs, B., T. Sottmann, R. Strey, J. Allgaier, L. Willner, and D. Richter, Amphiphilic Block Copolymers as Efficiency Boosters for Microemulsions, Langmuir 15:6707 (1999).

    Article  CAS  Google Scholar 

  95. Sottmann, T., Solubilization Efficiency Boosting by Amphiphilic Block Co-polymers in Microemulsions, Curr. Opin. Colloid Interface Sci. 7:57 (2002).

    Article  CAS  Google Scholar 

  96. Miñana-Pérez, M., A. Graciaa, J. Lachaise, and J.L. Salager, Solubilization of Polar Oils in Microemulsion Systems, Progr. Colloid Polymer Sci. 98:177 (1995).

    Google Scholar 

  97. Miñana-Pérez, M., R.E. Antón, A. Graciaa, J. Lachaise, and J.L. Salager, Solubilization of Polar Oils with Extended Surfactants, Colloids Surf. A 100:217 (1995).

    Article  Google Scholar 

  98. Miñana-Pérez, M., A. Graciaa, J. Lachaise, and J.L. Salager, Systems Containing Mixtures of Extended Surfactants and Conventional Nonionics. Phase Behavior and Solubilization in Microemulsion, in Proceedings 4th World Surfactants Congress, edited R. de Llúria, Asociación Española de Productores de Sustancias para Aplicaciones Tensionactivas (AEPSAT), Barcelona, Spain, 1996, Vol. 2, p. 226.

    Google Scholar 

  99. Aoudia, M., W.H. Wade, and V. Weerasooriya, Optimum Microemulsions Formulated with Propoxylated Guerbet Alcohol and Propoxylated Tridecyl Alcohol Sodium Sulfates, J. Dispersion Sci. Technol. 16:115 (1995).

    CAS  Google Scholar 

  100. Scorzza, C., P. Bault, G. Goethals, P. Martin, M. Miñana-Pérez, J.L. Salager, A. Usubillaga, and P. Villa, Synthèse de déerivés polypropilèneglycol à tête glucidyl ou ityl comme surfactifs, XVIIo Journées Chimie et Chimie des Glucides, Trégastel, France, June 1–5, 1998.

  101. Scorzza, C., P. Bault, G. Goethals, P. Martin, M. Miñana-Pérez, J.L. Salager, and P. Villa, New Amphiphilic Polypropyleneglycol Derivatives with Carbohydrate Polar Head, 24o Congres Anual Comité Español Detergencia, Barcelona, Spain, May 1999.

  102. Goethals, G., A. Fernández, P. Martin, M. Miñanna-Pérez, C. Scorzza, P. Villa, and P. Godé, Spacer Arm Influence on Glucido-amphiphilic Compound Properties, Carbohydr. Polym. 45:147 (2001).

    Article  CAS  Google Scholar 

  103. Scorzza, C., P. Godé, P. Martin, M. Miñana-Pérez, J.L. Salager, and P. Villa, Synthesis and Surfactant Properties of a New “Extended” Glucidoamphiphile Made from d-Glucose, J. Surfact. Deterg. 5:331 (2002).

    CAS  Google Scholar 

  104. Scorzza, C., P. Godé, G. Goethals, P. Martin, M. Miñana-Pérez, J.L. Salager, A. Usubillaga, and P. Villa, Another New Family of “Extended” Glucidoamphiphiles. Synthesis and Surfactant Properties for Different Sugar Head Groups and Spacer Arm Lengths, J. Surfact. Deterg. 5:337 (2002).

    CAS  Google Scholar 

  105. Scorzza, C., Synthesis and Properties of Extended Surfactants with Glucidic Polar Groups, Ph.D. Dissertation, Ref. ITF 0115, University of The Andes, Mérida, Venezuela, 2001 (in Spanish).

    Google Scholar 

  106. Fernández, A., Synthesis of New Extended Surfactants with Anionic and Carbohydrate Polar Group, M.S. Thesis, Ref. ITF 0201, University of The Andes, Mérida, Venezuela, 2002 (in Spanish).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Sabatini.

About this article

Cite this article

Salager, JL., Antón, R.E., Sabatini, D.A. et al. Enhancing solubilization in microemulsions—State of the art and current trends. J Surfact Deterg 8, 3–21 (2005). https://doi.org/10.1007/s11743-005-0328-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-005-0328-4

Key Words

Navigation