Skip to main content
Log in

Formulation of ultralow interfacial tension systems using extended surfactants

  • Published:
Journal of Surfactants and Detergents

Abstract

Inspired by the concept of lipophilic and hydrophilic linkers, extended surfactants have been proposed as highly desirable candidates for the formulation of microemulsions with high solubilization capacity and ultralow interfacial tension (IFT), especially for triglyceride oils. The defining characteristic of an extended surfactant is the presence of one or more intermediate-polarity groups between the hydrophilic head and the hydrophobic tail. Currently only limited information exists on extended surfactants; such knowledge is especially relevant for cleaning and separation applications where the cost of the surfactant and environmental regulations prohibit the use of concentrated surfactant solutions. In this work, we examine surfactant formulations for a wide range of oils using dilute solutions of the extended surfactant classes sodium alkyl polypropyleneoxide sulfate (R-(PO) x −SO4Na), and sodium alkyl polypropyleneoxide-polyethyleneoxide sulfate (R-(PO) y -(EO) z −SO4Na). The IFT of these systems was measured as a function of electrolyte and surfactant concentration for polar and nonpolar oils. The results show that these extended surfactant systems have low critical micelle concentrations (CMC) and critical microemulsion concentrations (CμC) compared with other surfactants. We also found that the unique structure of these extended surfactants allows them to achieve ultralow IFT with a wide range of oils, including highly hydrophobic oils (e.g., hexadecane), triolein, and vegetable oils, using only ppm levels of these extended surfactants. It was also found that the introduction of additional PO and EO groups in the extended surfactant yielded lower IFT and lower optimum salinity, both of which are desirable in most formulations. Based on the optimum formulation conditions, it was found that the triolein sample used in these experiments behaved as a very polar oil, and all other vegetable oils displayed very hydrophobic behavior. This unexpected triolein behavior is suspected to be due to uncharacterized impurities in the triolein sample, and will be further evaluated in future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ASC:

average number of carbons in saturated chain

CμC:

critical microemulsion concentration

CMC:

critical micelle concentration

DB:

average number of double bonds of unsaturated chains

EACN:

equivalent alkane carbon number

IFT:

interfacial tension

SP:

solubilization parameter

UC:

fraction of unsaturated chains

References

  1. Bourrel, M., and R. Schecter, Microemulsions and Related Systems, Marcel Dekker, New York, 1988.

    Google Scholar 

  2. Salager, J.L., R.E. Antón, D.A. Sabatini, J.H. Harwell, E.J. Acosta, and L.I. Tolosa, Enhancing Solubilization in Microemulsions—State of the Art and Current Trends, J. Surfact. Deterg. 8:3–21 (2005).

    Article  CAS  Google Scholar 

  3. Graciaa, A., J. Lachaise, C. Cucuphat, M. Bourrel, and J.L. Salager, Improving Solubilization in Microemulsions with Additives. 1. The Lipophilic Linker Role, Langmuir 9:669–672 (1993).

    Article  CAS  Google Scholar 

  4. Graciaa, A., J. Lachaise, C. Cucuphat, M. Bourrel, and J.L. Salager, Improving Solubilization in Microemulsions with Additives. 2. Long Chain Alcohols as Lipophilic Linkers Langmuir 9:3371–3374.

  5. Uchiyama, H., E. Acosta, S. Tran, D.A. Sabatini, and J.H. Harwell, Supersolubilization in Chlorinated Hydrocarbon Microemulsions: Solubilization Enhancement by Lipophilic and Hydrophilic Linkers, Ind. Eng. Chem. Res. 39:2704–2708 (2000).

    Article  CAS  Google Scholar 

  6. Acosta, E., H. Uchiyama, D.A. Sabatini, and J.H. Harwell, The Role of Hydrophilic Linkers, J. Surfact. Deterg. 5:151–157 (2002).

    Article  CAS  Google Scholar 

  7. Sabatini, D.A., E.J. Acosta, and J.H. Harwell, Linker Molecules in Surfactant Mixtures, J. Colloid Interface Sci. 8:316–326 (2003).

    Article  CAS  Google Scholar 

  8. Acosta, E., S. Tran, H. Uchiyama, D.A. Sabatini, and J.H. Harwell, Formulating Chlorinated Hydrocarbon Microemulsions Using Linker Molecules, Environ. Sci. Technol. 36:4618–4624 (2002).

    Article  Google Scholar 

  9. Acosta, E.J., J.H. Harwell, and D.A. Sabatini, Self-assembly in Linker-Modified Microemulsions, J. Colloid Interface Sci. 274:652–664 (2004).

    Article  CAS  Google Scholar 

  10. Miñana-Pérez, M., A. Graciaa, J. Lachaise, and J.L. Salager, Solubilization of Polar Oils in Microemulsion Systems, Prog. Colloid Polym. Sci. 98:177–179 (1995).

    Article  Google Scholar 

  11. Miñana-Pérez, M., R.E. Antón, A. Graciaa, J. Lachaise, and J.L. Salager, Solubilization of Polar Oils with Extended Surfactants, Colloid Surfaces A 100:217–224 (1995).

    Article  Google Scholar 

  12. Scorzza, C., P. Godé, P. Martin, M. Miñana-Pérez, J.L. Salager, and P. Villa, Synthesis and Surfactant Properties of a New “Extended” Glucidoamphiphile Made from d-Glucose, J. Surfact. Deterg. 5:331 (2002).

    Article  CAS  Google Scholar 

  13. Scorzza, C., P. Godé, G. Goethals, P. Martin, M. Miñana-Pérez, J.L. Salager, A. Usubillaga, and P. Villa, Another New Family of “Extended” Glucidoamphiphiles. Synthesis and Surfactant Properties for Different Sugar Head Groups and Spacer Arm Lengths, J. Surfact. Deterg. 5:337 (2002).

    Article  CAS  Google Scholar 

  14. Huang, L., A. Lips, and C. Co, Microemulsification of Triglyceride Sebum and the Role of Interfacial Structure on Bicontinuous Phase Behavior, Langmuir 20:3559–3563 (2004).

    Article  CAS  Google Scholar 

  15. Childs, J., E. Acosta, J.F. Scamehorn, and D.A. Sabatini, Surfactant-Enhanced Treatment of Oil-Based Drill Cuttings, J. Energy Res. Technol. 127:153–162 (2005).

    Article  CAS  Google Scholar 

  16. Yanatatsaneejit, U., P. Rangsunvigit, J.F. Scamehorn, and S. Chavadej, Diesel Removal by Froth Flotation Under Low Interfacial Tension Conditions I: Foam Characteristics, Coalescence Time, and Equilibration Time, Sep. Sci. Tech. 40:1537 (2005).

    Article  CAS  Google Scholar 

  17. Christov, N.C., N.D. Denkov, P.A. Kralchevsky, G. Broze, and A. Mehreteab, Kinetics of Triglyceride Solubilization by Micellar Solutions of Nonionic Surfactant and Triblock Copolymer1. Empty and Swollen Micelles, Langmuir 18:7880–7886 (2002).

    Article  CAS  Google Scholar 

  18. Huh, C., Interfacial Tensions and Solubilizing Ability of a Microemulsion Phase That Coexists with Oil and Brine, J. Colloid Interface Sci. 71:408–426 (1979).

    Article  CAS  Google Scholar 

  19. Tongcumpou, C., E.J. Acosta, L.B. Quencer, A.F. Joseph, J.F. Scamehorn, D.A. Sabatini, S. Chavadej, and N. Yanumet, Microemulsion Formation and Detergency with Oily Soils: II. Detergency Formulation and Performance, J. Surfact. Deterg. 6:205–214 (2003).

    Article  CAS  Google Scholar 

  20. Aveyard, R., B.P. Binks, and P.D.I. Fletcher, Interfacial Tensions and Aggregate Structure in Pentaethylene Glycol Monododecyl Ether/Oil/Water Microemulsion Systems, Langmuir 5:1210 (1989).

    Article  CAS  Google Scholar 

  21. Salager, J.L., J. Morgan, R.S. Schechter, W.H. Wade, and E. Vasquez, Optimum Formulation of Surfactant-Oil-Water Systems for Minimum Tension and Phase Behavior, Soc. Petrol. Eng. J. 19:107–115 (1979).

    Google Scholar 

  22. Salager, J.L., N. Márquez, A. Graciaa, and J. Lachaise, Partitioning of Ethoxylated Octylphenol Surfactants in Microemulsion-Oil-Water Systems: Influence of Temperature and Relation Between Partitioning Coefficient and Physicochemical Formulation, Langmuir 16:5534–5539 (2000).

    Article  CAS  Google Scholar 

  23. Campbell, E., Baker, N., and Bandurraga, M., eds., Food Fats and Oils, Institute of Shortening and Edible Oils, Washington, DC, 1999, p. 27.

    Google Scholar 

  24. Rosen, M.J., Surfactants and Interfacial Phenomena, 2nd ed., John Wiley and Sons, New York, 1989.

    Google Scholar 

  25. Lange, H., and M.J. Schwuger, Micelle Formation and Kraft-Points in a Homologous Series of Sodium-N-Alkyl Sulfates Including Odd-Numbered Members, Kolloid Z.Z. Polym. 223;145 (1968).

    Article  CAS  Google Scholar 

  26. Dahanayake, M., A.W. Cohen, and M.J. Rosen, Relationship of Structure to Properties of Surfactants: 13 Surface and Thermodynamic Properties of Some Oxyethylenated Sulfates and Sulfonates, J. Phys. Chem. 90:2413–2418 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Sabatini.

About this article

Cite this article

Witthayapanyanon, A., Acosta, E.J., Harwell, J.H. et al. Formulation of ultralow interfacial tension systems using extended surfactants. J Surfact Deterg 9, 331–339 (2006). https://doi.org/10.1007/s11743-006-5011-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-006-5011-2

Key words

Navigation