Skip to main content
Log in

Physicochemical properties and in vitro digestive properties of amylose and amylopectin isolated from tigernut (Cyperus esculentus L.) starch

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

This work systematically analyzed the microstructure and physicochemical properties of amylose (AM) and amylopectin (AP) isolated from tigernut starch (TS). The yields of AM and AP were 66.50% and 72.80%, respectively. Scanning electron micrographs showed that AM and AP were, structurally, very different from TS. Granules of AM and AP had rough surfaces and irregular shapes. AM had a V-type crystalline structure, while AP was believed to be amorphous. These structural differences influence their functional properties. AM had superior thermal stability and swelling characteristics, as well as high resistance to digestion. Meanwhile, AM gel had superior springiness and high chewability. While AP had good solubility and its paste was a liquid showing high fluidity. Collectively, these results are expected to provide new information valuable for future developments in the industrial application of AM and AP derived from TS.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that has been used is confidential.

References

  1. H.J. Chung, Q. Liu, Impact of molecular structure of amylopectin and amylose on amylose chain association during cooling. Carbohydr. Polym. 77(4), 807–815 (2009). https://doi.org/10.1016/j.carbpol.2009.03.004

    Article  CAS  Google Scholar 

  2. B.C. Maniglia, N. Castanha, M.L. Rojas, P.E.D. Augusto, Emerging technologies to enhance starch performance. Curr. Opin. Food Sci. 37, 26–36 (2021). https://doi.org/10.1016/j.cofs.2020.09.003

    Article  CAS  Google Scholar 

  3. I. Codina-Torrella, B. Guamis, A.J. Trujillo, Characterization and comparison of tiger nuts (Cyperus esculentus L.) from different geographical origin. Ind. Crop. Prod. 65, 406–414 (2015). https://doi.org/10.1016/j.indcrop.2014.11.007

    Article  CAS  Google Scholar 

  4. T. Guo, C. Wan, F. Huang, C. Wei, Evaluation of quality properties and antioxidant activities of tiger nut (Cyperus esculentus L.) oil produced by mechanical expression or/with critical fluid extraction. LWT Food Sci. Technol. 141, 110915 (2021). https://doi.org/10.1016/j.lwt.2021.110915

    Article  CAS  Google Scholar 

  5. X. Li, J. Fu, Y. Wang, F. Ma, D. Li, Preparation of low digestible and viscoelastic tigernut (Cyperus esculentus) starch by Bacillus acidopullulyticus pullulanase. Int. J. Biol. Macromol. 102, 651–657 (2017). https://doi.org/10.1016/j.ijbiomac.2017.04.068

    Article  CAS  PubMed  Google Scholar 

  6. W.B. Miao, Y.J. Li, S.Y. Ma, J.H. Jiang, H.M. Liu, X.S. Cai, Z. Qin, X.D. Wang, Effects of cold-pressing conditions on physicochemical and functional properties of cold-pressed tigernut oil and starch isolated from press-cake. Int. J. Food Sci. Technol. 57(1), 662–675 (2021). https://doi.org/10.1111/ijfs.15445

    Article  CAS  Google Scholar 

  7. H.M. Liu, W.B. Miao, R. Wang, N. Chen, S.Y. Ma, X.D. Wang, Improvement of functional and rheological features of tigernut tuber starch by using gum derived from Chinese quince seeds. LWT Food Sci. Technol. 143, 111180 (2021). https://doi.org/10.1016/j.lwt.2021.111180

    Article  CAS  Google Scholar 

  8. Y. Liu, J. Yu, L. Copeland, S. Wang, S. Wang, Gelatinization behavior of starch: reflecting beyond the endotherm measured by differential scanning calorimetry. Food Chem. 284, 53–59 (2019). https://doi.org/10.1016/j.foodchem.2019.01.095

    Article  CAS  PubMed  Google Scholar 

  9. X.X. Liu, H.M. Liu, J. Li, Y.Y. Yan, X.D. Wang, Y.X. Ma, G.Y. Qin, Effects of various oil extraction methods on the structural and functional properties of starches isolated from tigernut (Cyperus esculentus) tuber meals. Food Hydrocolloids 95, 262–272 (2019). https://doi.org/10.1016/j.foodhyd.2019.04.044

    Article  CAS  Google Scholar 

  10. B. Karakelle, N. Kian-Pour, O.S. Toker, I. Palabiyik, Effect of process conditions and amylose/amylopectin ratio on the pasting behavior of maize starch: a modeling approach. J. Cereal Sci. 94, 102998 (2020). https://doi.org/10.1016/j.jcs.2020.102998

    Article  CAS  Google Scholar 

  11. V. Vamadevan, E. Bertoft, Observations on the impact of amylopectin and amylose structure on the swelling of starch granules. Food Hydrocolloids 103, 105663 (2020). https://doi.org/10.1016/j.foodhyd.2020.105663

    Article  CAS  Google Scholar 

  12. K. Zhang, Z. Wu, D. Tang, K. Luo, H. Lu, Y. Liu, J. Dong, X. Wang, C. Lv, J. Wang, K. Lu, Comparative transcriptome analysis reveals critical function of sucrose metabolism related-enzymes in starch accumulation in the storage root of sweet potato. Front. Plant Sci. 8, 914 (2017). https://doi.org/10.3389/fpls.2017.00914

    Article  PubMed  PubMed Central  Google Scholar 

  13. W.B. Miao, Z.W. Wu, J.H. Jiang, Y.J. Li, Z. Qin, H.M. Liu, X.S. Cai, X.D. Wang, The physicochemical properties of starches isolated from defatted tigernut meals: effect of extrusion pretreatment. Carbohydr. Polym. 298, 120152 (2022). https://doi.org/10.1016/j.carbpol.2022.120152

    Article  CAS  PubMed  Google Scholar 

  14. Z. Wang, B. Chen, X. Zhang, Y. Li, W. Fang, X. Yu, L. Dang, Fractionation of kudzu amylose and amylopectin and their microstructure and physicochemical properties. Starch 69(3–4), 1500305 (2017). https://doi.org/10.1002/star.201500305

    Article  CAS  Google Scholar 

  15. B. Guo, Y. Wang, M. Pang, J. Wu, X. Hu, Z. Huang, H. Wang, S. Xu, S. Luo, C. Liu, Annealing treatment of amylose and amylopectin extracted from rice starch. Int. J. Biol. Macromol. 164, 3496–3500 (2020). https://doi.org/10.1016/j.ijbiomac.2020.08.245

    Article  CAS  PubMed  Google Scholar 

  16. E.B. Fonseca-Santanilla, L.L. Betancourt-Lopez, Physicochemical and structural characterization of starches from Andean roots and tubers grown in Colombia. Food Sci. Technol. Int. 28(2), 144–156 (2022). https://doi.org/10.1177/1082013221997313

    Article  CAS  PubMed  Google Scholar 

  17. M. Ulbrich, M.L. Salazar, E. Flöter, Separation and molecular characterization of the amylose- and amylopectin-fraction from native and partially hydrolyzed potato starch. Starch 69(7–8), 1600228 (2017). https://doi.org/10.1002/star.201600228

    Article  CAS  Google Scholar 

  18. L. Chen, D.J. McClements, H. Zhang, Z. Zhang, Z. Jin, Y. Tian, Impact of amylose content on structural changes and oil absorption of fried maize starches. Food Chem. 287, 28–37 (2019). https://doi.org/10.1016/j.foodchem.2019.02.083

    Article  CAS  PubMed  Google Scholar 

  19. H. Wang, K. Xu, Y. Ma, Y. Liang, H. Zhang, L. Chen, Impact of ultrasonication on the aggregation structure and physicochemical characteristics of sweet potato starch. Ultrason. Sonochem. 63, 104868 (2020). https://doi.org/10.1016/j.ultsonch.2019.104868

    Article  CAS  PubMed  Google Scholar 

  20. N. Ren, Z. Ma, J. Xu, X. Hu, Insights into the supramolecular structure and techno-functional properties of starch isolated from oat rice kernels subjected to different processing treatments. Food Chem. 317, 126464 (2020). https://doi.org/10.1016/j.foodchem.2020.126464

    Article  CAS  PubMed  Google Scholar 

  21. C. Yang, F. Zhong, H. Douglas Goff, Y. Li, Study on starch-protein interactions and their effects on physicochemical and digestible properties of the blends. Food Chem. 280, 51–58 (2019). https://doi.org/10.1016/j.foodchem.2018.12.028

    Article  CAS  PubMed  Google Scholar 

  22. R.L.D. Vieira, C. Gaglieri, C.S. de Oliveira, L.T. Ferreira, E. Schnitzler, G. Bannach, Effect of the milling process on the thermal behavior and crystallinity of buckwheat starch. J. Therm. Anal. Calorim. 144(3), 689–697 (2020). https://doi.org/10.1007/s10973-020-09498-x

    Article  CAS  Google Scholar 

  23. H. Xie, R. Ying, M. Huang, Effect of arabinoxylans with different molecular weights on the gelling properties of wheat starch. Int. J. Biol. Macromol. 209, 1676–1684 (2022). https://doi.org/10.1016/j.ijbiomac.2022.04.104

    Article  CAS  PubMed  Google Scholar 

  24. Y. Zhong, Y. Tian, X. Liu, L. Ding, J.J.K. Kirkensgaard, K. Hebelstrup, J.L. Putaux, A. Blennow, Influence of microwave treatment on the structure and functionality of pure amylose and amylopectin systems. Food Hydrocolloids 119, 106856 (2021). https://doi.org/10.1016/j.foodhyd.2021.106856

    Article  CAS  Google Scholar 

  25. S. Santacruz, R. Andersson, P. Åman, Characterisation of potato leaf starch with iodine-staining. Carbohydr. Polym. 59(3), 397–400 (2005). https://doi.org/10.1016/j.carbpol.2004.10.001

    Article  CAS  Google Scholar 

  26. A.L. Ezugwu, V.E. Ottah, S.O.O. Eze, F.C. Chilaka, Effect of pH, various divalent metal ion and different substrates on glucoamylase activity obtained from Aspergillus niger using amylopectin from tiger nut starch as carbon source. Afr. J. Biotechnol. 15(21), 980–988 (2016). https://doi.org/10.5897/AJB2015.14886

    Article  CAS  Google Scholar 

  27. Y. Zhu, B. Cui, C. Yuan, L. Lu, J. Li, A new separation approach of amylose fraction from gelatinized high amylose corn starch. Food Hydrocolloids 131, 107759 (2022). https://doi.org/10.1016/j.foodhyd.2022.107759

    Article  CAS  Google Scholar 

  28. P.V.F. Lemos, L.S. Barbosa, I.G. Ramos, R.E. Coelho, J.I. Druzian, Characterization of amylose and amylopectin fractions separated from potato, banana, corn, and cassava starches. Int. J. Biol. Macromol. 132, 32–42 (2019). https://doi.org/10.1016/j.ijbiomac.2019.03.086

    Article  CAS  PubMed  Google Scholar 

  29. Y. Zhang, X. Zhao, X. Bao, J. Xiao, H. Liu, Effects of pectin and heat-moisture treatment on structural characteristics and physicochemical properties of corn starch. Food Hydrocolloids 117, 106664 (2021). https://doi.org/10.1016/j.foodhyd.2021.106664

    Article  CAS  Google Scholar 

  30. H. Huang, Q. Jiang, Y. Chen, X. Li, X. Mao, X. Chen, L. Huang, W. Gao, Preparation, physico-chemical characterization and biological activities of two modified starches from yam (Dioscorea opposita Thunb.). Food Hydrocolloids. 55, 244–253 (2016). https://doi.org/10.1016/j.foodhyd.2015.11.016

    Article  CAS  Google Scholar 

  31. W. Al-Ansi, B.M. Sajid, A.A. Mahdi, Q.A. Al-Maqtari, A. Al-Adeeb, A. Ahmed, M. Fan, Y. Li, H. Qian, L. Jinxin, L. Wang, Molecular structure, morphological, and physicochemical properties of highlands barley starch as affected by natural fermentation. Food Chem. 356, 129665 (2021). https://doi.org/10.1016/j.foodchem.2021.129665

    Article  CAS  PubMed  Google Scholar 

  32. H. Yu, L. Cheng, J. Yin, S. Yan, K. Liu, F. Zhang, B. Xu, L. Li, Structure and physicochemical properties of starches in lotus (Nelumbo nucifera Gaertn.) rhizome. Food Sci. Nutr. 1(4), 273–83 (2013). https://doi.org/10.1002/fsn3.37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. C. Wang, Y. Xue, L. Yousaf, J. Hu, Q. Shen, Effects of high hydrostatic pressure on the ordered structure including double helices and V-type single helices of rice starch. Int. J. Biol. Macromol. 144, 1034–1042 (2020). https://doi.org/10.1016/j.ijbiomac.2019.09.180

    Article  CAS  PubMed  Google Scholar 

  34. M. Ahmad, A. Gani, F.A. Masoodi, S.H. Rizvi, Influence of ball milling on the production of starch nanoparticles and its effect on structural, thermal and functional properties. Int. J. Biol. Macromol. 151, 85–91 (2020). https://doi.org/10.1016/j.ijbiomac.2020.02.139

    Article  CAS  PubMed  Google Scholar 

  35. X. Zhou, S. Wang, Y. Zhou, Study on the structure and digestibility of high amylose Tartary buckwheat (Fagopyrum tataricum Gaertn.) starch-flavonoid prepared by different methods. J. Food Sci. 86(4), 1463–1474 (2021). https://doi.org/10.1111/1750-3841.15657

    Article  CAS  PubMed  Google Scholar 

  36. M. Piglowska, B. Kurc, L. Rymaniak, P. Lijewski, P. Fuc, Kinetics and thermodynamics of thermal degradation of different starches and estimation the OH group and H2O content on the surface by TG/DTG-DTA. Polymers (Basel). 12(2), 357 (2020). https://doi.org/10.3390/polym12020357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. K. Zhang, F. Cheng, K. Zhang, J. Hu, C. Xu, Y. Lin, M. Zhou, P. Zhu, Synthesis of long-chain fatty acid starch esters in aqueous medium and its characterization. Eur. Polym. J. 119, 136–147 (2019). https://doi.org/10.1016/j.eurpolymj.2019.07.021

    Article  CAS  Google Scholar 

  38. J.H. Zhao, P.K. Kumar, S.S. Sablani, Glass transitions in frozen systems as influenced by molecular weight of food components. Compr. Rev. Food Sci. Food Saf. 21(6), 4683–4715 (2022). https://doi.org/10.1111/1541-4337.13034

    Article  CAS  PubMed  Google Scholar 

  39. J. Wang, Y. Li, Z. Jin, Y. Cheng, Physicochemical, morphological, and functional properties of starches isolated from avocado seeds, a potential source for resistant starch. Biomolecules 12(8), 1121 (2022). https://doi.org/10.3390/biom12081121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. W. Xia, J. Chen, D. He, Y. Wang, F. Wang, Q. Zhang, Y. Liu, Y. Cao, Y. Fu, J. Li, Changes in physicochemical and structural properties of tapioca starch after high speed jet degradation. Food Hydrocolloids 95, 98–104 (2019). https://doi.org/10.1016/j.foodhyd.2019.04.025

    Article  CAS  Google Scholar 

  41. Z. Xu, Y. Xu, X. Chen, L. Zhang, H. Li, Z. Sui, H. Corke, Polishing conditions in rice milling differentially affect the physicochemical properties of waxy, low- and high-amylose rice starch. J. Cereal Sci. 99, 103183 (2021). https://doi.org/10.1016/j.jcs.2021.103183

    Article  CAS  Google Scholar 

  42. O.S. Lawal, K.O. Adebowale, R.A. Oderinde, Functional properties of amylopectin and amylose fractions isolated from bambarra groundnut (Voandzeia subterranean) starch. Afr. J. Biotechnol. 3(8), 399–404 (2004). https://doi.org/10.5897/AJB2004.000-2082

    Article  CAS  Google Scholar 

  43. M. Siwatch, R.B. Yadav, B.S. Yadav, Annealing and heat-moisture treatment of amaranth starch: effect on structural, pasting, and rheological properties. J. Food Meas. Charact. 16(3), 2323–2334 (2022). https://doi.org/10.1007/s11694-022-01325-1

    Article  Google Scholar 

  44. C. Min, W. Ma, J. Kuang, J. Huang, Y.L.J.F.H. Xiong, Textural properties, microstructure and digestibility of mungbean starch-flaxseed protein composite gels. Food Hydrocolloids 126, 107482 (2022). https://doi.org/10.1016/j.foodhyd.2022.107482

    Article  CAS  Google Scholar 

  45. M. Tarahi, S. Hedayati, F. Shahidi, Effects of mung bean (Vigna radiata) protein isolate on rheological, textural, and structural properties of native corn starch. Polymers 14(15), 3012 (2022). https://doi.org/10.3390/polym14153012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. V. Cortés-Viguri, L. Hernández-Rodríguez, C. Lobato-Calleros, J.C. Cuevas-Bernardino, B.E. Hernández-Rodríguez, J. Alvarez-Ramirez, E.J. Vernon-Carter, Annatto (Bixa orellana L.), a potential novel starch source: antioxidant, microstructural, functional, and digestibility properties. J. Food Meas. Charact. 16(1), 637–651 (2021). https://doi.org/10.1007/s11694-021-01228-7

    Article  Google Scholar 

  47. X. Wu, H. Yu, G. Bao, M. Luan, C. Wang, Preparation of adzuki bean starch-lipid complexes and their anti-digestion mechanism. J. Food Meas. Charact. 16(2), 945–956 (2021). https://doi.org/10.1007/s11694-021-01222-z

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the China Agriculture Research System of MOF and MARA (Grant Numbers CARS-14, 2022–2025), the Key Project for Technological Breakthrough and Scientific Achievement in Henan, China (grant numbers 212102110082), and the “Double First-Class” Project for Postgraduate-Cultivating Innovation Platform Establishment Programme of Henan University of Technology (Grant Numbers HAUTSYL2023PT09).

Author information

Authors and Affiliations

Authors

Contributions

Zhong-Wei Wu: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Visualization, Writing-original draft, Writing-review & editing. Shuai Xu: Data curation, Formal analysis, Investigation, Methodology. Wen-Jin Cheng: Investigation, Formal analysis. Xiao-Shuang Cai: Formal analysis, Methodology, Visualization, Supervision, Writing-review & editing. Hua-Min Liu: Supervision, Methodology & writing-review. Yu-Xiang Ma: Visualization, Methodology. Xue-De Wang: Supervision, Funding acquisition.

Corresponding authors

Correspondence to Xiao-Shuang Cai or Hua-Min Liu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, ZW., Xu, S., Cheng, WJ. et al. Physicochemical properties and in vitro digestive properties of amylose and amylopectin isolated from tigernut (Cyperus esculentus L.) starch. Food Measure (2024). https://doi.org/10.1007/s11694-024-02468-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11694-024-02468-z

Keywords

Navigation