Skip to main content

Amylose–Amylopectin Ratio

Comprehensive Understanding of Structure, Physicochemical Attributes, and Applications of Starch

  • Living reference work entry
  • First Online:
Handbook of Biopolymers

Abstract

Starch is a relevant biopolymer since it is easily modifiable and can be used as an alternative material to several petrochemical-based nonbiodegradable materials. The physicochemical characteristics and subsequent uses of starch are dependent on their botanical origin, which has a big impact on the granule structure and amylose to amylopectin ratio, which ranges from 15:85 to 35:65, with the exception of waxy starch and high amylose maize starch. The amylose to amylopectin ratio has a momentous effect on the biochemical, physicochemical, mechanical, and thermal properties of native and modified starch. The chapter provides a comprehensive understanding of the effect of amylose to amylopectin characteristics of starch on their physical and biochemical properties of starch, including the digestibility, dispersibility, rheological, and reinforcing properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • B.A. Acevedo, M. Villanueva, M.G. Chaves, M.V. Avanza, F. Ronda, Modification of structural and physicochemical properties of cowpea (Vigna unguiculata) starch by hydrothermal and ultrasound treatments. Food Hydrocoll. 124, 107266 (2022)

    Article  CAS  Google Scholar 

  • Y. Ai, J.L. Jane, Gelatinization and rheological properties of starch. Starch-Stärke 67(3–4), 213–224 (2015)

    Article  CAS  Google Scholar 

  • O.A. Ajacob, O.A. Adeleke, Isolation and characterization of starch obtained from cocoyam cultivated at Akungba Akoko, Ondo State, Nigeria. Nutri. Food Sci. Int. J. 8(2), 555732 (2019)

    Google Scholar 

  • T.O. Akanbi, S. Nazamid, A.A. Adebowale, Functional and pasting properties of a tropical breadfruit (Artocarpus altilis) starch from Ile- Ife, Osun State, Nigeria. Int. Food Res. J. 16, 151–157 (2009)

    Google Scholar 

  • W. Al-Ansi, Y. Zhang, T.A.A. Alkawry, A. Al-Adeeb, A.A. Mahdi, Q.A. Al-Maqtari, A. Ahmed, B.S. Mushtaq, M. Fan, Y. Li, H. Qian, Influence of germination on bread-making behaviors, functional and shelf-life properties, and overall quality of highland barley bread. LWT 159, 113200 (2022)

    Google Scholar 

  • S. Al-Assaf, G.O. Phillips, P.A. Williams, T.A. du Plessis, Application of ionizing radiations to produce new polysaccharides and proteins with enhanced functionality. Nucl. Instrum. Methods Phys. Res. Sect B 265(1), 37–43 (2007). https://doi.org/10.1016/jnimb200708015. Beam Interactions with Materials and Atoms

    Article  CAS  Google Scholar 

  • A.M. Amini, S.M.A. Razavi, S.A. Mortazavi, Morphological, physicochemical, and viscoelastic properties of sonicated corn starch. Carbohydr. Polym. 122, 282–292 (2015)

    Article  Google Scholar 

  • I.S. Arvanitoyannis, Totally and partially biodegradable polymer blends based on natural and synthetic macromolecules: Preparation, physical properties, and potential as food packaging materials. J. Macromol. Sci. Part C 39(2), 205–271 (1999)

    Article  Google Scholar 

  • A.O. Ashogbon, Physicochemical properties of Bambarra groundnut starch and cassava starch blends. Afr. J. Food Sci. 8(6), 322–329 (2014)

    Article  Google Scholar 

  • A.O. Ashogbon, E.T. Akintayo, Recent trend in the physical and chemical modification of starches from different botanical sources: A review. Starch-Starke 66(1–2), 41–57 (2013)

    Google Scholar 

  • S.P. Bangar, W.S. Whiteside, K.D. Dunno, G.A. Cavender, P. Dawson, R. Love, Starch-based bio-nanocomposites films reinforced with cellulosic nanocrystals extracted from Kudzu (Pueraria montana) vine. Int. J. Biol. Macromol. 203, 350–360 (2022)

    Article  Google Scholar 

  • J. Bao, Z. Ao, J.L. Jane, Characterization of physical properties of flour and starch obtained from gamma-irradiated white rice. Starch-Stärke 57(10), 480–487 (2005)

    Article  CAS  Google Scholar 

  • V. Barichello, R.Y. Yada, R.H. Coffin, D.W. Stanley, Low temperature sweetening in susceptible and resistance potatoes-starch structure and composition. J. Food Sci. 55, 1054–1059 (1990)

    Article  CAS  Google Scholar 

  • K. Bashir, M. Aggarwal, Physicochemical, structural and functional properties of native and irradiated starch: A review. J. Food Sci. Technol. 56(2), 513–523 (2019)

    Article  Google Scholar 

  • W. Berski, A. Ptaszek, P. Ptaszek, R. Ziobro, G. Kowalski, M. Grzesik, B.J.C.P. Achremowicz, Pasting and rheological properties of oat starch and its derivatives. Carbohydr. Polym. 83(2), 665–671 (2011)

    Article  CAS  Google Scholar 

  • E. Bertoft, Understanding starch structure: Recent progress. Agronomy 7(3), 56 (2017). https://doi.org/10.3390/agronomy7030056

    Article  CAS  Google Scholar 

  • C.G. Biliaderis, Physical characteristics, enzymic digestibility and structure of chemically modified smooth pea and waxy maize starches. J. Agric. Food Chem. 30(5), 925–930 (1982)

    Article  CAS  Google Scholar 

  • J. Blazek, E.P. Gilbert, Application of small-angle X-ray and neutron scattering techniques to the characterisation of starch structure: A review. Carbohydr. Polym. 85(2), 281–293 (2011)

    Article  CAS  Google Scholar 

  • M.K. Bolade, O.J. Oni, Influence of acetylation on the physicochemical properties of composited starches from sweet potato (Ipomoea batatas L.) and water yam (Dioscorea alata L.). Afr. J. Biotechnol. 14(51), 3340–3349 (2015)

    Article  CAS  Google Scholar 

  • A. Buléon, P. Colonna, V. Planchot, S. Ball, Starch granules: Structure and biosynthesis. Int. J. Biol. Macromol. 23, 85–112 (1998)

    Article  Google Scholar 

  • C. Cao, M. Shen, J. Hu, J. Qi, P. Xie, Y. Zhou, Comparative study on the structure-properties relationships of native and debranched rice starch. CyTA-J. Food 18(1), 84–93 (2020)

    Article  CAS  Google Scholar 

  • N. Castanha, M.L. Rojas, P.E.D. Augusto, An insight into the pasting properties and gel strength of starches from different sources: Effect of starch concentration. Scientia Agropecuaria 12(2), 203–212 (2021)

    Article  CAS  Google Scholar 

  • L.M. Che, D. Li, L.J. Wang, X. Dong Chen, Z.H. Mao, Micronization and hydrophobic modification of cassava starch. Int. J. Food Prop. 10(3), 527–536 (2007). https://doi.org/10.1080/10942910600932982

    Article  CAS  Google Scholar 

  • H.F. Chhatariya, S. Srinivasan, P.M. Choudhary, S.S. Begum, Corn starch biofilm reinforced with orange peel powder: Characterization of physicochemical and mechanical properties.. Materials Today: Proc. 59, 884–892 (2022)

    Google Scholar 

  • C. Chi, X. Li, Y. Zhang, L. Chen, L. Li, Z. Wang, Digestibility and supramolecular structural changes of maize starch by non-covalent interactions with gallic acid. Food Funct. 8(2), 720–730 (2017)

    Article  CAS  Google Scholar 

  • C. Chi, X. Li, T. Feng, X. Zeng, L. Chen, L. Li, Improvement in nutritional attributes of rice starch with dodecyl gallate complexation: A molecular dynamic simulation and in vitro study. J. Agric. Food Chem. 66(35), 9282–9290 (2018)

    Article  CAS  Google Scholar 

  • H.J. Chung, Q. Liu, Effect of gamma irradiation on molecular structure and physicochemical properties of corn starch. J. Food Sci. 74(5), C353–C361 (2009)

    Article  CAS  Google Scholar 

  • K.M. Chung, T.W. Moon, J.K. Chun, Influence of annealing on gel properties of mung bean starch. Cereal Chem. 77(5), 567–571 (2000)

    Article  CAS  Google Scholar 

  • Y. Deng, Y. Jin, Y. Luo, Y. Zhong, J. Yue, X. Song, Y. Zhao, Impact of continuous or cycle high hydrostatic pressure on the ultrastructure and digestibility of rice starch granules. J. Cereal Sci. 60(2), 302–310 (2014)

    Article  CAS  Google Scholar 

  • S.B. Dhull, S. Punia, M. Kumar, S. Singh, P. Singh, Effect of different modifications (physical and chemical) on morphological, pasting, and rheological properties of black rice (Oryza sativa L. Indica) starch: A comparative study. Starch-Stärke 73(1–2), 2000098 (2021)

    Article  CAS  Google Scholar 

  • K. Dipnaik, P. Kokare, Ratio of amylose and amylopectin as indicators of glycaemic index and in vitro enzymatic hydrolysis of starches of long, medium and short grain rice. Int. J. Res. Med. Sci. 5(10), 4502–4505 (2017 October)

    Article  Google Scholar 

  • L. do Val Siqueira, C.I.L.F. Arias, B.C. Maniglia, C.C. Tadini, Starch-based biodegradable plastics: Methods of production, challenges and future perspectives. Curr. Opin. Food Sci. 38, 122–130 (2021)

    Article  Google Scholar 

  • H.X.N. Doan, Y. Song, S. Lee, B.H. Lee, S.H. Yoo, Characterization of rice starch gels reinforced with enzymatically-produced resistant starch. Food Hydrocoll. 91, 76–82 (2019)

    Article  CAS  Google Scholar 

  • H. Dongmo, S.T. Tambo, G.B. Teboukeu, A.N. Mboukap, B.S. Fotso, M.C.T. Djuidje, J.M. Klang, Effect of process and variety on physico-chemical and rheological properties of two corn flour varieties (Atp and Kassaï). J. Agric. Food Res. 2, 100075 (2020)

    Google Scholar 

  • A. Dufresne, Crystalline starch based nanoparticles. Curr. Opin. Colloid Interface Sci. 19, 397–408 (2014)

    Article  CAS  Google Scholar 

  • R.C. Eerlingen, H. Jacobs, K. Block, J.A. Delcour, Effects of hydrothermal treatments on the rheological properties of potato starch. Carbohydr. Res. 297(4), 347–356 (1997)

    Article  CAS  Google Scholar 

  • H.O. Egharevba, Chemical properties of starch and its application in the food industry, in Chemical Properties of Starch, (IntechOpen, 2019). https://doi.org/10.5772/intechopen.87777

    Chapter  Google Scholar 

  • A.A. Escobar-Puentes, A. García-Gurrola, S. Rincón, A. Zepeda, F. Martínez-Bustos, Effect of amylose/amylopectin content and succinylation on properties of corn starch nanoparticles as encapsulants of anthocyanins. Carbohydr. Polym. 250, 116972 (2020)

    Article  CAS  Google Scholar 

  • I.D. Evans, D.R. Haisman, Rheology of gelatinized starch suspensions. J. Texture Stud. 17, 253–257 (1979)

    Google Scholar 

  • X. Fan, J. Zhu, W. Dong, Y. Sun, C. Lv, B. Guo, R. Xu, Comparison of pasting properties measured from the whole grain flour and extracted starch in barley (Hordeum vulgare L.). PLoS One 14(5), e0216978 (2019)

    Article  CAS  Google Scholar 

  • J.E. Fannon, R.J. Hauber, J.N. BeMiller, Surface pores of starch granules. Cereal Chem. 69(3), 284–288 (1992)

    Google Scholar 

  • J.D. Ferry, Viscoelastic Properties of Polymers, 3rd edn. (Wiley, New York, 1980)

    Google Scholar 

  • C.M.L. Franco, S.J. do Rio Preto, C.F. Ciacco, Factors that affect the enzymatic degradation of natural starch granules -effect of the size of the granules. Starch – Stärke 44(11), 422–426 (1992). https://doi.org/10.1002/star.19920441106

    Article  CAS  Google Scholar 

  • D. French, Organization of starch granules, in Starch Chemistry and Technology, (1984), pp. 183–247. https://doi.org/10.1016/b978-0-12-746270-7.50013-6

    Chapter  Google Scholar 

  • D.J. Gallant, B. Bouchet, P.M. Baldwin, Microscopy of starch: Evidence of a new level of granule organization. Carbohydr. Polym. 32, 177–191 (1997)

    Article  CAS  Google Scholar 

  • S. Ha, M.N. Weitzmann, G.R. Beck, Chapter 4 – Dental and skeletal applications of silica-based nanomaterials, in Nanobiomaterials in Clinical Dentistry (Micro and Nano Technologies), ed. by K. Subramani, W. Ahmed, J. K. Hartsfield, 1st edn., (William Andrew, 2013)

    Google Scholar 

  • S.B. Haaj, W. Thielemans, A. Magnin, S. Boufi, Starch nanocrystals and starch nanoparticles from waxy maize as nanoreinforcement: A comparative study. Carbohydr. Polym. 143, 310–317 (2016)

    Google Scholar 

  • Z. Han, R. Shi, D.W. Sun, Effects of novel physical processing techniques on the multi-structures of starch. Trends Food Sci. Technol. 97, 126–135 (2020)

    Article  CAS  Google Scholar 

  • A.R. Hernández, Chemical modification of starch with synthetic. Appl. Modified Starches 2, 3–22 (2018)

    Google Scholar 

  • R. Hormdok, A. Noomhorm, Hydrothermal treatments of rice starch for improvement of rice noodle quality. LWT-Food Sci. Technol. 40(10), 1723–1731 (2007)

    Article  CAS  Google Scholar 

  • S. Hussain, Pasting and rheological properties of different starches using starch cell of discovery hybrid rheometer. Sci. Lett. 3(8), 93–99 (2020)

    Google Scholar 

  • A. Imberty, S. Pérez, Conformational analysis and molecular modelling of the branching point of amylopectin. Int. J. Biol. Macromol. 11, 177–185 (1989)

    Article  CAS  Google Scholar 

  • A. Imberty, V. Tran, A. Buléon, S. Perez, Recent advances in knowledge of starch structure. Starch/Stärke. 43, 375–384 (1991)

    Article  CAS  Google Scholar 

  • J.L. Jane, Structure of starch granules. J. Appl. Glycosci. 54, 31–36 (2007)

    Article  Google Scholar 

  • J.-l. Jane, T. Kasemsuwan, S. Leas, H.F. Zobel, J.F. Robyt, Anthology of starch granule morphology by scanning electron microscopy. Starch/Stärke 46, 121–129 (1994). https://doi.org/10.1002/star.19940460402

    Article  CAS  Google Scholar 

  • J.L. Jane, K.S. Wong, A.E. McPherson, Branch-structure difference in starches of A-and B-type X-ray patterns revealed by their Naegeli dextrins. Carbohydr. Res. 300(3), 219–227 (1997)

    Article  CAS  Google Scholar 

  • B. Karakelle, N. Kian-Pour, O.S. Toker, I. Palabiyik, Effect of process conditions and amylose/amylopectin ratio on the pasting behavior of maize starch: A modeling approach. J. Cereal Sci. 94, 102998 (2020)

    Article  CAS  Google Scholar 

  • L. Kaur, N. Singh, N.S. Sodhi, H.S. Gujral, Some properties of potatoes and their starches I. cooking, textural and rheological properties of potatoes. Food Chem. 79, 177–181 (2002)

    Article  CAS  Google Scholar 

  • V. Krishnan, D. Mondal, H. Bollinedi, S. Srivastava, S.V. Ramesh, L. Madhavan, S. Praveen, Cooking fat types alter the inherent glycaemic response of niche rice varieties through resistant starch (RS) formation. Int. J. Biol. Macromol. 162, 1668–1681 (2020)

    Article  CAS  Google Scholar 

  • K.D. Kulkarni, D.N. Kulkarni, U.M. Ingle, Sorghum malt-based weaning formulations: Preparation, functional properties and nutritive value. Food Nutr. Bull. 13(4), 322–327 (1991) https://juniperpublishers.com/nfsij/NFSIJ.MS.ID.555732.php

    Article  Google Scholar 

  • A. Laurentin, C.A. Edwards, Fiber: Resistant starch and oligosaccharides, in Encyclopedia of Human Nutrition, ed. by L. H. Allen, A. Prentice, B. Caballero, 3rd edn., (Academic, 2013), pp. 246–253. ISBN 9780123848857/

    Chapter  Google Scholar 

  • M.V. Lawal, Modified starches as direct compression excipients–effect of physical and chemical modifications on tablet properties: A review. Starch-Stärke 71(1–2), 1800040 (2019)

    Article  Google Scholar 

  • D.S. LeCorre, J. Bras, A. Dufresne, Influence of the botanic origin of starch nanocrystals on the morphological and mechanical properties of natural rubber nanocomposites. Macromol. Mater. Eng. 297(10), 969–978 (2012). https://doi.org/10.1002/mame.201100317

    Article  CAS  Google Scholar 

  • X. Li, C. Qiu, N. Ji, C. Sun, L. Xiong, Q. Sun, Mechanical, barrier and morphological properties of starch nanocrystals-reinforced pea starch films. Carbohydr. Polym. 121, 155–162 (2015)

    Article  CAS  Google Scholar 

  • N. Lin, J. Huang, P.R. Chang, D.P. Anderson, J. Yu, Preparation, modification, and application of starch nanocrystals in nanomaterials: A review. J. Nanomater. 2011, 1–13 (2011). https://doi.org/10.1155/2011/573687

    Article  CAS  Google Scholar 

  • Q. Liu, E. Weber, V. Currie, R. Yada, Physicochemical properties of starches during potato growth. Carbohydr. Polym. 51(2), 213–221 (2003)

    Article  CAS  Google Scholar 

  • Y. Liu, V.O. Selomulyo, W. Zhou, Effect of high pressure on some physicochemical properties of several native starches. J. Food Eng. 88(1), 126–136 (2008)

    Article  CAS  Google Scholar 

  • P. Liu, Y. Long, X. Wang, D. Li, L. Chen, X. Li, Glass transition temperature of starches with different amylose/amylopectin ratios. J. Cereal Sci. 51, 388–391 (2010)

    Article  CAS  Google Scholar 

  • F. Liu, N. Romanova, E.A. Lee, R. Ahmed, M. Evans, E.P. Gilbert, I.J. Tetlow, Glucan affinity of starch synthase IIa determines binding of starch synthase I and starch-branching enzyme IIb to starch granules. Biochem. J. 448(3), 373–387 (2012)

    Article  CAS  Google Scholar 

  • H. Liu, H. Fan, R. Cao, C. Blanchard, M. Wang, Physicochemical properties and in vitro digestibility of sorghum starch altered by high hydrostatic pressure. Int. J. Biol. Macromol. 92, 753–760 (2016a). https://doi.org/10.1016/j.ijbiomac.2016.07.088

    Article  CAS  Google Scholar 

  • H. Liu, L. Wang, R. Cao, H. Fan, M. Wang, In vitro digestibility and changes in physicochemical and structural properties of common buckwheat starch affected by high hydrostatic pressure. Carbohydr. Polym. 144, 1–8 (2016b)

    Article  CAS  Google Scholar 

  • W. Liu, Z. Wang, J. Liu, B. Dai, S. Hu, R. Hong, G. Zeng, Preparation, reinforcement and properties of thermoplastic starch film by film blowing. Food Hydrocoll. 108, 106006 (2020)

    Article  CAS  Google Scholar 

  • A. Lopez-Gil, M.A. Rodriguez-Perez, J.A. De Saja, Strategies to improve the mechanical properties of starch-based materials: Plasticization and natural fibers reinforcement. Polímeros 24(SPE), 36–42 (2014)

    Article  Google Scholar 

  • P.A. Magallanes-Cruz, P.C. Flores-Silva, L.A. Bello-Perez, Starch structure influences its digestibility: A review. J. Food Sci. 82(9), 2016–2023 (2017). https://doi.org/10.1111/1750-3841.13809

    Article  CAS  Google Scholar 

  • B.M.J. Martens, J.J.G. Walter, E.M.A.M. Bruininx, H.A. Schols, Amylopectin structure and crystallinity explains variation in digestion kinetics of starches across botanic sources in an in vitro pig model. J. Animal Sci. Biotechnol. 9 (2018). https://doi.org/10.1186/s40104-018-0303-8

  • P. Mélé, H. Angellier-Coussy, S. Molina-Boisseau, A. Dufresne, Reinforcing mechanisms of starch nanocrystals in a nonvulcanized natural rubber matrix. Biomacromolecules 12(5), 1487–1493 (2011). https://doi.org/10.1021/bm101443a

    Article  CAS  Google Scholar 

  • S. Mishra, T. Rai, Morphology and functional properties of corn, potato and tapioca starches. Food Hydrocoll. 20(5), 557–566 (2006)

    Article  CAS  Google Scholar 

  • S.S. Nada, W. Zou, C. Li, R.G. Gilbert, Parameterizing amylose chain-length distributions for biosynthesis-structure-property relations. Anal. Bioanal. Chem. 409(29), 6813–6819 (2017)

    Article  CAS  Google Scholar 

  • A.S. Nadir, I.M.F. Helmy, M.A. Nahed, M.M.A. Wafaa, M.T. Ramadan, Modification of potato starch by some different physical methods and utilization in cookies production. Int. J. Curr. Microbiol. App. Sci. 4(10), 556–569 (2015)

    CAS  Google Scholar 

  • A. Nishi, Y. Nakamura, N. Tanaka, H. Satoh, Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm. Plant Physiol. 127, 459–472 (2001)

    Article  CAS  Google Scholar 

  • H. Omoregie Egharevba, Chemical properties of starch and its application in the food industry, in Chemical Properties of Starch, (2020). https://doi.org/10.5772/intechopen.87777

    Chapter  Google Scholar 

  • D.D. Pan, J. Jane, Internal structure of normal maize starch granules revealed by chemical surface gelatinization. Biomacromolecules 1, 128–132 (2000)

    Article  Google Scholar 

  • A. Parra-Campos, L. Serna-Cock, J.F. Solanilla-Duque, Effect of the addition of fique bagasse microparticles in obtaining a biobased material based on cassava starch. Int. J. Biol. Macromol. 207, 289–298 (2022). https://doi.org/10.1016/j.ijbiomac.2022.03.016

    Article  CAS  Google Scholar 

  • B. Pimpa, S.K.S. Muhammad, M.A. Hassan, Z. Ghazali, K. Hashim, D. Kanjanasopa, Effect of electron beam irradiation on physicochemical properties of sago starch. Songklanakarin J. Sci. Technol. 29(3), 759–768 (2007)

    Google Scholar 

  • C. Pukkahuta, S. Shobsngob, S. Varavinit, Effect of osmotic pressure on starch: New method of physical modification of starch. Starch-Stärke 59(2), 78–90 (2007)

    Article  CAS  Google Scholar 

  • C. Pukkahuta, B. Suwannawat, S. Shobsngob, S. Varavinit, Comparative study of pasting and thermal transition characteristics of osmotic pressure and heat–moisture treated corn starch. Carbohydr. Polym. 72(3), 527–536 (2008)

    Article  CAS  Google Scholar 

  • S. Rahman, Z. Li, I. Batey, M.P. Cochrane, R. Appels, M. Morell, Genetic alteration of starch functionality in wheat. J. Cereal Sci. 31(1), 91–110 (2000)

    Article  CAS  Google Scholar 

  • A. Regina, B. Kosar-Hashemi, S. Ling, Z. Li, S. Rahman, M. Morell, Control of starch branching in barley defined through differential RNAi suppression of starch branching enzyme IIa and IIb. J. Exp. Bot. 61, 1469–1482 (2010)

    Article  CAS  Google Scholar 

  • L. Ren, Y. Zhang, Q. Wang, J. Zhou, J. Tong, D. Chen, X. Su, Convenient method for enhancing hydrophobicity and dispersibility of starch nanocrystals by crosslinking modification with citric acid. Int. J. Food Eng. 14(4), 20170238 (2018)

    Article  Google Scholar 

  • J. Robin, C. Mercier, R. Charbonniere, A. Guilbot, Lintnerized starches. Gel filtration and enzymatic studies of insoluble residues from prolonged acid treatment of potato starch. Cereal Chem. 51, 389–405 (1974)

    CAS  Google Scholar 

  • J. Robyt, Starch: Structure, properties, chemistry, and enzymology, in Glycoscience, ed. by B. O. Fraser-Reid, K. Tatsuta, J. Thiem, (Springer, Berlin, 2008). https://doi.org/10.1007/978-3-540-30429-6_35

    Chapter  Google Scholar 

  • M.E. Rodriguez-Garcia, M.A. Hernandez-Landaverde, J.M. Delgado, C.F. Ramirez-Gutierrez, M. Ramirez-Cardona, B.M. Millan-Malo, S.M. Londoño-Restrepo, Crystalline structures of the main components of starch. Curr. Opin. Food Sci. 37, 107–111 (2021)

    Article  CAS  Google Scholar 

  • K. Sangseethong, N. Termvejsayanon, K. Sriroth, Characterization of physicochemical properties of hypochlorite-and peroxide-oxidized cassava starches. Carbohydr. Polym. 82(2), 446–453 (2010)

    Article  CAS  Google Scholar 

  • F.M. Shapter, R.J. Henry, L.S. Lee, Endosperm and starch granule morphology in wild cereal relatives. Plant Genet. Resources 6(2), 85–97 (2008)

    Article  Google Scholar 

  • Y.C. Shi, P.A. Seib, The structure of four waxy starches related to gelatinization and retrogradation. Carbohydr. Res. 227, 131–145 (1992)

    Article  CAS  Google Scholar 

  • Y.-C. Shi, T. Capitani, P. Trzasko, R. Jeffcoat, Molecular structure of a low-amylopectin starch and other high-amylose maize starches. J. Cereal Sci. 27, 289–299 (1998)

    Article  CAS  Google Scholar 

  • J. Singh, N. Singh, Studies on the morphological, thermaland rheological properties of starch separated from some Indian potato cultivars. Food Chem. 75, 67–77 (2001)

    Article  CAS  Google Scholar 

  • N. Singh, J. Singh, L. Kaur, N.S. Sodhi, Gill; B. S., Morphological, thermal and rheological properties of starches from different botanical sources – A review. Food Chem. 81, 219–231 (2003)

    Article  CAS  Google Scholar 

  • N. Singh, N. Inouchi, K. Nishinari, Structural, thermal and viscoelastic characteristics of starches separated from normal, sugary and waxy maize. Food Hydrocoll. 20, 923–935 (2006)

    Article  CAS  Google Scholar 

  • N. Singh, Y. Nakaura, N. Inouchi, K. Nishinari, Structure and viscoelastic properties of starches separated from different legumes. Starch/Stärke 60, 349–357 (2008a)

    Article  CAS  Google Scholar 

  • N. Singh, N. Isono, S. Srichuwong, T. Noda, K. Nishinari, Structural, thermal and viscoelastic properties of potato starches. Food Hydrocoll. 22, 979–988 (2008b)

    Article  CAS  Google Scholar 

  • H. Singh, N.S. Sodhi, N. Singh, Structure and functional properties of acid thinned sorghum starch. Int. J. Food Prop. 12(4), 713–725 (2009)

    Article  CAS  Google Scholar 

  • A.J. Slade, C. McGuire, D. Loeffler, J. Mullenberg, W. Skinner, G. Fazio, et al., Development of high amylose wheat through TILLING. BMC Plant Biol. 12, 69 (2012)

    Article  CAS  Google Scholar 

  • P. Snow, K. O’Dea, Factors affecting the rate of hydrolysis of starch in food. Am. J. Clin. Nutr. 34(12), 2721–2727 (1981)

    Article  CAS  Google Scholar 

  • K. Tao, C. Li, W. Yu, R.G. Gilbert, E. Li, How amylose molecular fine structure of rice starch affects functional properties. Carbohydr. Polym. 204, 24–31 (2019)

    Article  CAS  Google Scholar 

  • J. Tarique, E.S. Zainudin, S.M. Sapuan, R.A. Ilyas, A. Khalina, Physical, mechanical, and morphological performances of arrowroot (Maranta arundinacea) fiber reinforced arrowroot starch biopolymer composites. Polymers 14(3), 388 (2022)

    Article  CAS  Google Scholar 

  • Tester, R.F. & Karkalas, J. (2002). Starch, in: Biopolymers, Polysaccharides II: Polysaccharides from Eukaryotes. In.A. Steinbiichel (series Ed.).; E. J. Vandamme, S. De Baets and A.Steinbiichel ( volume Eds.), Volume 6, pp (381–438). Weinheim: Wiley-VCH

    Google Scholar 

  • R.F. Tester, W.R. Morrison, Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose, and lipids. Cereal Chem. 67(6), 551–557 (1990)

    CAS  Google Scholar 

  • R.F. Tester, S.J.J. Debon, H.V. Davies, M.J. Gidley, Effect of temperature on the synthesis, composition and physical properties of potato starch. J. Sci. Food Agric. 79, 2045–2051 (1999)

    Article  CAS  Google Scholar 

  • R.F. Tester, S.J. Debon, M.D. Sommerville, Annealing of maize starch. Carbohydr. Polym. 42, 287–299 (2000)

    Article  CAS  Google Scholar 

  • R.F. Tester, J. Karkalas, X. Qi, Starch—Composition, fine structure and architecture. J. Cereal Sci. 39, 151–165 (2004)

    Article  CAS  Google Scholar 

  • R. Thirumdas, A. Trimukhe, R.R. Deshmukh, U.S. Annapure, Functional and rheological properties of cold plasma treated rice starch. Carbohydr. Polym. 157, 1723–1731 (2017)

    Article  CAS  Google Scholar 

  • V.C. Verma, A. Kumar, M.G.H. Zaidi, A.K. Verma, J.P. Jaiswal, D.K. Singh, A. Singh, S. Agrawal, Starch isolation from different cereals with variable amylose/amylopectin ratio and its morphological study using SEM and FT-IR. Int. J. Curr. Microbiol. App. Sci. 7(10), 211–228 (2018)

    Article  CAS  Google Scholar 

  • T.A. Waigh, A.M. Donald, F. Heidelbach, C. Riekel, M.J. Gidley, Analysis of the native structure of starch granules with small angle x-ray microfocus scattering. Biopolymers 49(1), 91–105 (1999). https://doi.org/10.1002/(sici)1097-0282(199901)49:1<91::aid-bip9>3.0.co;2-9

    Article  CAS  Google Scholar 

  • A.A. Waleed, B.S. Mushtaq, A.A. Mahdi, Q.A. Al-Maqtari, A.A. Abduqader, A. Ahmed, L. Wang, Molecular structure, morphological, and physicochemical properties of highlands barley starch as affected by natural fermentation. Food Chem. 356, 129665 (2021)

    Article  Google Scholar 

  • Y.J. Wang, L. Wang, Characterization of acetylated waxy maize starches prepared under catalysis by different alkali and alkaline-earth hydroxides. Starch-Stärke 54(1), 25–30 (2002)

    Article  CAS  Google Scholar 

  • J. Wang, P. Hu, L. Lin, Z. Chen, Q. Liu, C. Wei, Gradually decreasing starch branching enzyme expression is responsible for the formation of heterogeneous starch granules. Plant Physiol. 176(1), 582–595 (2018)

    Article  CAS  Google Scholar 

  • K. Wang, F. Vilaplana, A. Wu, J. Hasjim, R.G. Gilbert, The size dependence of the average number of branches in amylose. Carbohydr. Polym. 223, 115134 (2019)

    Article  Google Scholar 

  • Y. Wicaksono, N. Nuri, B. Wisudyaningsih, Effect of temperature and pH of modification process on the physical-mechanical properties of modified cassava starch. Mol. Ther. 11(2), 248–255 (2016)

    CAS  Google Scholar 

  • X. Wu, R. Zhao, D. Wang, S.R. Bean, P.A. Seib, M.R. Tuinstra, M. Campbell, A. O’brien, Effects of amylose, corn protein, and corn fiber contents on production of ethanol from starch‐rich media. Cereal Chem. 83, 569–575 (2006)

    Google Scholar 

  • F. Xie, L. Yu, B. Su, P. Liu, J. Wang, H. Liu, L. Chen, Rheological properties of starches with different amylose/amylopectin ratios. J. Cereal Sci. 49(3), 371–377 (2009)

    Article  CAS  Google Scholar 

  • S. Yu, Y. Zhang, Y. Ge, Y. Zhang, T. Sun, Y. Jiao, X.Q. Zheng, Effects of ultrasound processing on the thermal and retrogradation properties of nonwaxy rice starch. J. Food Process Eng. 36(6), 793–802 (2013)

    Article  CAS  Google Scholar 

  • V.P. Yuryev, A.V. Krivandin, V.I. Kiseleva, L.A. Wasserman N.K. Genkina, J. Fornal, W. Blaszczak, A. Schiraldi. Structural parameters of amylopectin clusters and semicrystalline growth rings in wheat starches with different amylose content. Carbohydr. Res. 339, 2683–2691 (2004)

    Google Scholar 

  • A. Zabolotets, V. Litvyak, A. Yermakou, G. Ospankulova, Morphological characteristics of starch granules of eastern and central European potato varieties (Solanum Tuberosum). Ukrainian Food J. 8(1), 18–33 (2019)

    Article  CAS  Google Scholar 

  • D. Zhang, T. Mu, H. Sun, Comparative study of the effect of starches from five different sources on the rheological properties of gluten-free model doughs. Carbohydr. Polym. 176, 345–355 (2017)

    Article  CAS  Google Scholar 

  • K. Zhou, M. Slavin, H. Lutterodt, M. Whent, N.M. Eskin, L. Yu, Cereals and legumes. Biochem. Foods, 3–48 (2013). https://doi.org/10.1016/b978-0-08-091809-9.00001-7

  • H. Zhou, L. Wang, G. Liu, X. Meng, Y. Jing, X. Shu, et al., Critical roles of soluble starch synthase SSIIIa and granule-bound starch synthase waxy in synthesizing resistant starch in rice. Proc. Natl. Acad. Sci. 113(45), 12844–12849 (2016)

    Article  CAS  Google Scholar 

  • J. Zhu, S. Zhang, B. Zhang, D. Qiao, H. Pu, S. Liu, L. Li, Structural features and thermal property of propionylated starches with different amylose/amylopectin ratio. Int. J. Biol. Macromol. 97, 123–130 (2017)

    Article  CAS  Google Scholar 

  • H.F. Zobel, Molecules to granules: A comprehensive starch review. Starch 40, 44–50 (1988)

    Article  CAS  Google Scholar 

  • H.F. Zobel, A.M. Stephen, Starch: Structure, analysis, and applications, in Food Polysaccharides and their Applications, ed. by A. M. Stephen, (Marcel Dekker, New York, 1995), p. 35

    Google Scholar 

Download references

Acknowledgments

We thank the University Grants Commission, Government of India, for the financial support of the UGC Major Research Project (No. F. No. 42-300/2013(SR)). Dr. Bejoy expresses gratitude to the Department of Science and Technology for supporting the college’s Fund for Improvement of S&T Infrastructure (FIST) program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Veda Krishnan or Bejoy Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Varghese, S. et al. (2022). Amylose–Amylopectin Ratio. In: Thomas, S., AR, A., Jose Chirayil, C., Thomas, B. (eds) Handbook of Biopolymers . Springer, Singapore. https://doi.org/10.1007/978-981-16-6603-2_48-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-6603-2_48-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-6603-2

  • Online ISBN: 978-981-16-6603-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics