Skip to main content
Log in

Annealing and heat-moisture treatment of amaranth starch: effect on structural, pasting, and rheological properties

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The influence of annealing and heat-moisture treatment on structural, rheological and pasting parameters of amaranth starch was studied. The starch from amaranth seeds was extracted by steeping the seeds in 0.25% NaOH solution and modified through annealing and heat-moisture treatment. The swelling power, solubility, thermal properties, pasting properties, morphology, X-ray crystallinity, FT-IR spectra study and rheological properties of starches were evaluated. The swelling power of amaranth starch was reduced significantly (p ≤ 0.05) after modifications. The gelatinization temperature of amaranth starch increased significantly (p ≤ 0.05) after annealing and heat-moisture treatment. The peak, hot paste and final viscosity of amaranth starch reduced significantly (p ≤ 0.05) whereas pasting temperature and setback viscosity increased significantly after modifications. Heat-moisture treated amaranth starch showed thermo-stable structure with restricted swelling, high gelatinization temperature, and increased pasting temperature. The native and modified starches were found to have A-type diffraction pattern. No change in the FTIR spectra bands of annealed, and heat-moisture treated amaranth starch was noted but the intensity of bands decreased after modifications. Rheological studies showed the reduction in the value of storage modulus (G′), loss modulus (G″) and complex viscosity and an increase in flow behavior index after annealing and heat-moisture treatment. The results of this work revealed that the annealing and heat-moisture treatment altered the physicochemical characteristics of amaranth starch with improved thermal stability which enhance its high value utilization in food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. S. Mendonca, P.H. Saldiva, R.J. Cruz, J.A.G. Areas, Food Chem 116, 738–742 (2009)

    Article  CAS  Google Scholar 

  2. X. Kong, J. Bao, H. Corke, Food Chem 113, 371–376 (2009)

    Article  CAS  Google Scholar 

  3. R. Gonzalez, C. Carrara, E. Tosi, E. Re, M.C. Anon, A.M.R. Pilosof, LWT-Food SciTechnol 40, 36–43 (2007)

    Article  CAS  Google Scholar 

  4. M. Siwatch, R.B. Yadav, B.S. Yadav, Qual Assur Saf Crop Foods 11, 3–13 (2019)

    Article  CAS  Google Scholar 

  5. J. Uriyapongson, P. Rayas-Duarte, Cereal Chem 71, 571–577 (1994)

    CAS  Google Scholar 

  6. N.L. Escudero, G.J. Alabarracin, L. Lopez, M.S. Gimenez, J Food Biochem 35, 1327–1341 (2011)

    Article  CAS  Google Scholar 

  7. M. Siwatch, R.B. Yadav, CurrNutr Food Sci 13, 296–302 (2017)

    CAS  Google Scholar 

  8. M.E. Villareal, P.D. Ribotta, L.B. Iturriaga, LWT Food SciTechnol 51, 441–447 (2013)

    Article  CAS  Google Scholar 

  9. D.W. Irving, R. Becker, Food Struct 4, 43–53 (1985)

    Google Scholar 

  10. A.N.C. Resio, M.P. Tolaba, C. Suarez, Food Sci Technol Int 65, 371–378 (2000)

    Article  Google Scholar 

  11. A.D. Betancur, G.L. Chel, H.E. Canizares, J Agr Food Chem 45, 378–362 (1997)

    Article  CAS  Google Scholar 

  12. K.O. Adebowale, T. Henle, U. Schwarzenbolz, T. Doert, Food Hydrocoll 23, 1947–1957 (2009)

    Article  CAS  Google Scholar 

  13. R.F. Tester, S.J.J. Debon, Int J Biol Macromol 27, 1–12 (2000)

    Article  CAS  PubMed  Google Scholar 

  14. H. Jacobs, J.A. Delcour, J Agr Food Chem 46, 2895–2905 (1998)

    Article  CAS  Google Scholar 

  15. R. Colussi, D. Kringel, L. Kaur, E-da Rosa Zavareze, A.R.G. Dias, J. Singh, Food Chem 318 (2020)

  16. M.-N. Li, Y. Xie, H.-Q. Chen, B. Zhang, Food Chem 272, 523–529 (2019)

    Article  CAS  PubMed  Google Scholar 

  17. M. Sharma, D.N. Yadav, A.K. Singh, S.K. Tomar, J Food SciTechnol 52, 6502–6510 (2015)

    CAS  Google Scholar 

  18. M. Zheng, Y. Xiao, S. Yang, H. Liu, M. Liu, S. Yaqoob, X. Xu, J. Liu, Food Sci Nutr 8, 735–743 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. H. Liu, X. Guo, W. Li, X. Wang, M. Lv, Q. Peng, M. Wang, Carbohyd Polym 132, 237–324 (2015)

    Article  CAS  Google Scholar 

  20. C. Goel, A.D. Semwal, A. Khan, S. Kumar, G.K. Sharma, J Food SciTechnol 57, 2941–2948 (2020)

    CAS  Google Scholar 

  21. H.J. Chung, S.Y. Lee, J.H. Kim, J.W. Lee, M.W. Byun, S.T. Lim, J Cereal Sci 52, 53–58 (2010)

    Article  CAS  Google Scholar 

  22. N.K. Chandla, D.C. Saxena, S. Singh, J Cereal Sci 75, 306–313 (2017)

    Article  CAS  Google Scholar 

  23. H. Choi, W. Kim, M. Shin, Starch 56, 469–477 (2004)

    Article  CAS  Google Scholar 

  24. W.S. Ratnayake, A.B. Wassinger, D.S. Jackson, Cereal Chem 84(4), 415–422 (2007)

    Article  CAS  Google Scholar 

  25. H. Jacobs, R.C. Eerlingen, W. Clauwaert, J.A. Delcour, Cereal Chem 72, 480–487 (1995)

    CAS  Google Scholar 

  26. W. Jiranuntakul, C. Puttanlek, V. Rungsardthong, S. Puncha-arnon, D. Uttapap, J Food Engg 104, 246–258 (2011)

    Article  CAS  Google Scholar 

  27. AOAC International Official methods of analysis (18th edn.) (2006) Washington, DC.

  28. P.C. Williams, F.D. Kuzina, I. Hlyanka, Cereal Chem 47, 411–420 (1970)

    CAS  Google Scholar 

  29. K.N. Waliszewski, M.A. Aparicio, L.A. Bello, J.A. Monray, Carbohyd Polym 52, 237–282 (2003)

    Article  CAS  Google Scholar 

  30. T. Vasanthan, R.S. Bhatty, Cereal Chem 73, 199–207 (1996)

    CAS  Google Scholar 

  31. S. Nara, T. Komiy, Starch 35, 407–410 (1983)

    Article  CAS  Google Scholar 

  32. M.A. Loubes, A.N. Calzetta Resio, M.P. Tolaba, C. Suarez (2012) LWT Food Sci Technol 46, 519–524

  33. L.A. Bello-Perez, P. Colonna, P. Roger, O. Paredes-Lopez, Cereal Chem 75, 395–402 (1998)

    Article  Google Scholar 

  34. K. Babor, G. Halasova, L. Dodok, R. Geciova, J. Lokaj, Chem Papers 48(1), 58–63 (1994)

    CAS  Google Scholar 

  35. H. Lan, R. Hoover, L. Jayakody, Q. Liu, E. Donner, M. Baga, E.K. Asare, P. Hucl, R.N. Chibbar, Food Chem 111, 663–675 (2008)

    Article  CAS  Google Scholar 

  36. H.J. Chung, Q. Liu, R. Hoover, Carbohydr Polym 75, 436–447 (2009)

    Article  CAS  Google Scholar 

  37. K.O. Adebowale, T.A. Afolabi, B.I. Olu-Owolabi, Food Hydrocoll 19, 974–983 (2005)

    Article  CAS  Google Scholar 

  38. K. Kulp, K. Lorenz, Cereal Chem 58, 46–48 (1981)

    Google Scholar 

  39. I.P.H. Claver, Q.L.I. Zhang, Z. Kexue, H. Zhou, Pak J Nutr 9, 336–342 (2010)

    Article  CAS  Google Scholar 

  40. R. Hoover, H. Manuel, J Cereal Sci 23, 153–162 (1996)

    Article  CAS  Google Scholar 

  41. A. Gunaratne, R. Hoover, Carbohydr Polym 49, 425–437 (2002)

    Article  CAS  Google Scholar 

  42. R.N. Waduge, R. Hoover, T. Vasanthan, J. Gao, J. Li, Food Res Int 39, 59–77 (2006)

    Article  CAS  Google Scholar 

  43. R. Hormdok, A. Noomhorm, LWT-Food Sci Technol 40, 1723–1731 (2007)

    Article  CAS  Google Scholar 

  44. A.M.M. Gomes, C.E.M. Silva, N.M.P.S. Ricardo, Carbohydr Polym 60, 1–6 (2005)

    Article  CAS  Google Scholar 

  45. P. Shieldneck, C.E. Smith, Starch: Chemistry and Technology, 620–625 (1971)

  46. S. Radosta, B. Kettlitz, F. Schierbaum, C. Gernat, Starch 44, 8–14 (1992)

    Article  CAS  Google Scholar 

  47. M. Radosavljevic, J. Jane, L.A. Johnson, Cereal Chem 75(2), 212–216 (1998)

    Article  CAS  Google Scholar 

  48. A. Kawabata, N. Takase, E. Miyoshi, S. Swawayma, T. Kimura, K. Kudo, Starch 46, 463–469 (1994)

    Article  CAS  Google Scholar 

  49. Q. Sun, Z. Han, L. Wang, L. Xiong, Food Chem 145, 756–764 (2014)

    Article  CAS  PubMed  Google Scholar 

  50. B. Zhang, C. Wu, H. Li, X. Hu, Z. Jin, Y. Tian, X. Xu, Starch 66, 1–8 (2015)

    CAS  Google Scholar 

  51. Z. Sui, T. Yao, Y. Zhao, X. Ye, X. Kong, L. Ai, Food Chem 173, 1125–1132 (2015)

    Article  CAS  PubMed  Google Scholar 

  52. I. Capron, P. Robert, P. Colonna, M. Brogly, V. Planchot, Carbohydr Polym 68, 249–259 (2007)

    Article  CAS  Google Scholar 

  53. F. Zeng, F. Chen, F. Kong, Q. Gao, R.M. Aadil, S. Yu, Food Chem 187, 348–353 (2015)

    Article  CAS  PubMed  Google Scholar 

  54. G.H. Zheng, F.W. Sosulski, R.T. Tyler, Food Res Int 30, 493–602 (1998)

    Article  Google Scholar 

  55. R. Hoover, T. Vasanthan, Carbohydr Res 252, 33–53 (1994)

    Article  CAS  PubMed  Google Scholar 

  56. S. Simsek, M. Ovando-Martinez, M.K. Whitney, L.A. Bello-Perez, Food Chem 134, 1796–1803 (2012)

    Article  CAS  PubMed  Google Scholar 

  57. Y. Yoshimoto, T. Egashira, I. Hanashiro, H. Ohinata, Y. Takase, Y. Takeda, Cereal Chem 81, 515–520 (2004)

    Article  CAS  Google Scholar 

  58. R. Hoover, T. Vasanthan, J Food Biochem 17, 303–325 (1994)

    Article  CAS  Google Scholar 

  59. S. Li, R. Ward, Q. Gao, Food Hydrocoll 25, 1702–1709 (2011)

    Article  CAS  Google Scholar 

  60. O.S. Lawal, Int J Biol Macromol 37, 268–277 (2005)

    Article  CAS  PubMed  Google Scholar 

  61. F. Shih, J. King, A.J. Dailek, R. Ali, Cereal Chem 84, 527–531 (2007)

    Article  CAS  Google Scholar 

  62. L.S. Collado, L.B. Mabesa, C.G. Oates, H. Corke, J Food Sci 66, 604–609 (2001)

    Article  CAS  Google Scholar 

  63. A. Olagunju, O. Omoba, V. Enujiugha, A. Alashi, R. Aluko, Foods 9, 957 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  64. I.S.M. Zaidul, N.A. Norulaini, A.K. Omar, H. Yamauchi, T. Noda, Carbohydr Polym 69, 784–791 (2007)

    Article  CAS  Google Scholar 

  65. H. Molavi, S.M.A. Razavi, R. Farhoosh, Food Chem 15, 385–393 (2018)

    Article  CAS  Google Scholar 

  66. O.O. Olayinka, K.O. Adebowale, B.I. Olu-Owolabi, Food Hydrocoll 22, 225–230 (2008)

    Article  CAS  Google Scholar 

  67. H. Zobel, Starch 40, 1–7 (1988)

    Article  CAS  Google Scholar 

  68. X. Xia, G. Li, F. Liao, F. Zhang, J. Zheng, J. Kan, Int J Food Prop 18, 1029–1037 (2015)

    Article  CAS  Google Scholar 

  69. C. Perera, R. Hoover, A.M. Martin, Food Res Int 30, 235–247 (1997)

    Article  CAS  Google Scholar 

  70. A.M.M. Gomes, C.E.M. Silva, N.M.P.S. Ricardo, J.M. Sasaki, R. Germani, Starch 56, 419–423 (2004)

    Article  CAS  Google Scholar 

  71. L. Jayakody, R. Hoover, Carbohydr Polym 74, 691–703 (2008)

    Article  CAS  Google Scholar 

  72. J.F. Steffe, Rheological Methods in Food Process Engineering. East Lansing Michigan, USA (1996)

  73. T.G. Mezger, The Rheology Handbook. Vincentz Network Hannover, Germany (2006)

  74. D.N. Yadav, N. Chhikara, T. Anand, M. Sharma, A.K. Singh, J Food Sci Technol 51, 2169–2175 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  75. O.F. Osundahunsi, K.T. Seidua, R. Mueller, Carbohydr Polym 83, 1916–1921 (2011)

    Article  CAS  Google Scholar 

  76. X. Kong, S. Kasapis, E. Bertoft, H. Corke, Starch 62, 302–308 (2010)

    Article  CAS  Google Scholar 

  77. P.N. Bhandari, R.S. Singhal, D.D. Kale, Carbohydr Polym 47, 365–371 (2002)

    Article  CAS  Google Scholar 

  78. L.S. Pepe, J. Moraes, K.M. Albano, V.R.N. Telis, C.M.L. Franco, Food Sci Technol Int 22, 256–265 (2015)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by University Grants Commission, New Delhi.

Funding

This study was funded by University Grants Commission, New Delhi.

Author information

Authors and Affiliations

Authors

Contributions

MS conducted the experiments, collected all data, and interpreted the results. RBY designed and supervised the study and involved in drafting and data interpretation of manuscript. BSY critically revised and edited the manuscript.

Corresponding author

Correspondence to Ritika B. Yadav.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study does not involve any human or animal testing.

Informed consent

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siwatch, M., Yadav, R.B. & Yadav, B.S. Annealing and heat-moisture treatment of amaranth starch: effect on structural, pasting, and rheological properties. Food Measure 16, 2323–2334 (2022). https://doi.org/10.1007/s11694-022-01325-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01325-1

Keywords

Navigation