Skip to main content
Log in

Structural and functional properties of amaranth starches from residue obtained during protein extraction

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The present study evaluated Amaranthus caudatus (AC) and A. hypochondriacus (AH) starches obtained as coproduct during protein extraction for composition, granule size, amylopectin fine structure, thermal, retrogradation, pasting and dynamic rheological-properties to elucidate structure-function relationships. The starches exhibited unimodal particle size distribution with mean granule size of 1.26–3.12 μm. AC starch with larger granules (mean granule size 3.12 μm) than AH starches (1.26–1.59 μm) gelatinized at lower temperatures (lower DSC transition and pasting temperatures), showed higher paste viscosities and produced more elastic gels (lower tan δ and higher ). Starch granule size related positively with the proportion of amylopectin chains with DP < 12, paste viscosities and dynamic rheological moduli while negatively with non-starch components, gel tan δ and the proportion of amylopectin chains with DP > 12. Starches with greater proportion of amylopectin chains with DP > 12 showed higher gelatinization temperatures, while shorter chains (DP < 12), lipids and proteins contributed to reduced retrogradation tendencies (lower percent retrogradation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. F. Zhu, Structures, physicochemical properties, and applications of amaranth starch. Crit. Rev. Food Sci. Nutr. 57, 313–325 (2017)

    Article  CAS  PubMed  Google Scholar 

  2. N. Singh, P. Singh, K. Shevkani, A.S. Virdi, Amaranth: Potential source for flour enrichment, in Flour and Breads and their Fortification in Health and Disease Prevention (Ch. 10), Second Edition. ed. by V.R. Preedy, R.R. Watson (Academic Press Elsevier, London, 2019)

    Google Scholar 

  3. H. Choi, W. Kim, M. Shin, Properties of Korean amaranth starch compared to waxy millet and waxy sorghum starches. Starch-Staerke 56, 469–477 (2014)

    Article  CAS  Google Scholar 

  4. R. González, C. Carrara, E. Tosi, M.C. Añón, A. Pilosof, Amaranth starch-rich fraction properties modified by extrusion and fluidized bed heating. LWT-Food Sci. Technol. 40, 136–143 (2007)

    Article  CAS  Google Scholar 

  5. N. Singh, S. Kaur, A. Kaur, N. Isono, Y. Ichihashi, T. Noda, J.C. Rana, Structural, thermal, and rheological properties of Amaranthus hypochondriacus and Amaranthus caudatus starches. Starch-Staerke 66, 457–467 (2014)

    Article  CAS  Google Scholar 

  6. K. Shevkani, N. Singh, A. Kaur, J.C. Rana, Physicochemical, pasting, and functional properties of amaranth seed flours: effects of lipids removal. J. Food Sci. 79, C1271–C1277 (2014)

    Article  CAS  PubMed  Google Scholar 

  7. K. Shevkani, N. Singh, J.C. Rana, A. Kaur, Relationship between physicochemical and functional properties of amaranth (Amaranthus hypochondriacus) protein isolates. Int. J. Food Sci. Technol. 49, 541–550 (2014)

    Article  CAS  Google Scholar 

  8. Association of Official Analytical Chemists, Official Methods of Analysis, 15th edn. (AOAC, Washington, 1990)

    Google Scholar 

  9. N.K. Chandla, D.C. Saxena, C.S. Singh, Amaranth (Amaranthus spp.) starch isolation, characterization, and utilization in development of clear edible films. J. Food Process. Preserv. 41, e13217 (2017)

    Article  CAS  Google Scholar 

  10. S. Singh, N. Singh, N. Isono, T. Noda, Relationship of granule size distribution and amylopectin structure with pasting, thermal, and retrogradation properties in wheat starch. J. Agric. Food Chem. 58, 1180–1188 (2010)

    Article  CAS  PubMed  Google Scholar 

  11. A. Edwards, D.C. Fulton, C.M. Hylton, S.A. Jobling, M. Gidley, U. Rössner, C. Martin, A.M. Smith, A combined reduction in activity of starch synthases II and III of potato has novel effects on the starch of tubers. Plant J. 17, 251–261 (1999)

    Article  CAS  Google Scholar 

  12. K. Shevkani, N. Singh, S. Singh, A.K. Ahlawat, A.M. Singh, Relationship between physicochemical and rheological properties of starches from Indian wheat lines. Int. J. Food Sci. Technol. 46, 2584–2590 (2011)

    Article  CAS  Google Scholar 

  13. J.J.M. Swinkels, Composition and properties of commercial native starches. Starch-Staerke 37, 1–5 (1985)

    Article  CAS  Google Scholar 

  14. M.D. Teli, P. Rohera, J. Sheikh, R. Singhal, Use of Amaranthus (Rajgeera) starch vis-à-vis wheat starch in printing of vat dyes. Carbohydr. Polym. 76, 460–463 (2009)

    Article  CAS  Google Scholar 

  15. X. Xia, G. Li, F. Liao, F. Zhang, J. Zheng, J. Kan, Granular structure and physicochemical properties of starches from amaranth grain. Int. J. Food Prop. 18, 1029–1037 (2015)

    Article  CAS  Google Scholar 

  16. K.A. Schnetzler, W.M. Breene, in Amaranth: Biology, Chemistry and Technology (O. Parades-Lopez (ed.)). CRC Press, Boca Raton, FL, Ch. 9 (1994)

  17. X. Kong, J. Bao, H. Corke, Physical properties of Amaranthus starch. Food Chem. 113, 371–376 (2009)

    Article  CAS  Google Scholar 

  18. J.L. Jane, Structure of starch granules. J. Appl. Glycosci. 54, 31–36 (2007)

    Article  Google Scholar 

  19. P.M. Baldwin, Starch granule-associated proteins and polypeptides: a review. Starch‐Staerke 53, 475–503 (2001)

    Article  Google Scholar 

  20. S. Dhital, A.K. Shrestha, J. Hasjim, M.J. Gidley, Physicochemical and structural properties of maize and potato starches as a function of granule size. J. Agric. Food Chem. 59, 10151–10161 (2011)

    Article  CAS  PubMed  Google Scholar 

  21. M.F. Marcone, Starch properties of Amaranthus pumilus (seabeach amaranth): a threatened plant species with potential benefits for the breeding/amelioration of present Amaranthus cultivars. Food Chem. 73, 61–66 (2001)

    Article  CAS  Google Scholar 

  22. K. Shevkani, N. Singh, R. Bajaj, A. Kaur, Wheat starch production, structure, functionality and applications-a review. Int. J. Food Sci. Technol. 52, 38–58 (2017)

    Article  CAS  Google Scholar 

  23. N. Singh, S. Kaur, J.C. Rana, Y. Nakaura, N. Inouchi, Isoamylase debranched fractions and granule size in starches from kidney bean germplasm: distribution and relationship with functional properties. Food Res. Int. 47, 174–181 (2012)

    Article  CAS  Google Scholar 

  24. N. Singh, K. Shevkani, A. Kaur, S. Thakur, N. Parmar, A.S. Virdi, Characteristics of starch obtained at different stages of purification during commercial wet milling of maize. Starch-Staerke 66, 668–677 (2014)

    Article  CAS  Google Scholar 

  25. R.F. Tester, R. Yousuf, J. Karkalas, B. Kettlitz, H. Röper, Properties of protease-treated maize starches. Food Chem. 109, 257–263 (2008)

    Article  CAS  PubMed  Google Scholar 

  26. J. Rosicka-Kaczmarek, B. Makowski, E. Nebesny, M. Tkaczyk, A. Komisarczyk, Z. Nita, Composition and thermodynamic properties of starches from facultative wheat varieties. Food Hydrocoll. 54, 66–76 (2016)

    Article  CAS  Google Scholar 

  27. L.A. Baker, P. Rayas-Duarte, Retrogradation of amaranth starch at different storage temperatures and the effects of salt and sugars. Cereal Chem. 75, 308–314 (1998)

    Article  CAS  Google Scholar 

  28. Y. Liu, P.K. Ng, Isolation and characterization of wheat bran starch and endosperm starch of selected soft wheats grown in Michigan and comparison of their physicochemical properties. Food Chem. 176, 137–144 (2015)

    Article  CAS  PubMed  Google Scholar 

  29. M. Gudmundsson, A.C. Eliasson, Retrogradation of amylopectin and the effects of amylose and added surfactants/emulsifiers. Carbohydr. Polym. 13, 295–315 (1990)

    Article  CAS  Google Scholar 

  30. S. Hizukuri, Polymodal distribution of the chain lengths of amylopectins, and its significance. Carbohydr. Res. 147, 342–347 (1986)

    Article  CAS  Google Scholar 

  31. W. Li, J. Gao, G. Wu, J. Zheng, S. Ouyang, Q. Luo, G. Zhang, Physicochemical and structural properties of A-and B-starch isolated from normal and waxy wheat: effects of lipids removal. Food Hydrocoll. 60, 364–373 (2016)

    Article  CAS  Google Scholar 

  32. M.R. Debet, M.J. Gidley, Three classes of starch granule swelling: Influence of surface proteins and lipids. Carbohydr. Polym. 64, 452–465 (2006)

    Article  CAS  Google Scholar 

  33. A. Kaur, K. Shevkani, M. Katyal, N. Singh, A.K. Ahlawat, A.K. Singh, Physicochemical and rheological properties of starch and flour from different durum wheat varieties and their relationships with noodle quality. J. Food Sci. Technol. 53, 2127–2138 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. I.S.M. Zaidul, H. Yamauchi, S. Takigawa, C. Matsuura-Endo, T. Suzuki, T. Noda, Correlation between the compositional and pasting properties of various potato starches. Food Chem. 105, 164–172 (2007)

    Article  CAS  Google Scholar 

  35. N. Singh, A. Kaur, K. Shevkani, R. Ezekiel, P. Kaur, N. Isono, T. Noda, Structural, morphological, thermal, and pasting properties of starches from diverse Indian potato cultivars. Starch-Staerke 70, 1700130 (2018)

    Article  CAS  Google Scholar 

  36. X.Z. Han, O.H. Campanella, H. Guan, P.L. Keeling, B.R. Hamaker, Influence of maize starch granule-associated protein on the rheological properties of starch pastes. Part II. Dynamic measurements of viscoelastic properties of starch pastes. Carbohydr. Polym. 49, 323–330 (2002)

    Article  CAS  Google Scholar 

  37. S.K. Du, H. Jiang, X. Yu, J.L. Jane, Physicochemical and functional properties of whole legume flour. LWT-Food Sci. Technol. 55, 308–313 (2014)

    Article  CAS  Google Scholar 

  38. N. Singh, N. Pal, G. Mahajan, S. Singh, K. Shevkani, Rice grain and starch properties: effects of nitrogen fertilizer application. Carbohydr. Polym. 86, 219–225 (2011)

    Article  CAS  Google Scholar 

  39. G. Méndez-Montealvo, F.J. García-Suárez, O. Paredes-López, L.A. Bello-Pérez, Effect of nixtamalization on morphological and rheological characteristics of maize starch. J. Cereal Sci. 48, 420–425 (2008)

    Article  CAS  Google Scholar 

  40. S. Hsu, S. Lu, C. Huang, Viscoelastic changes of rice starch suspension during gelatinization. J. Food Sci. 65, 215–220 (2000)

    Article  CAS  Google Scholar 

  41. S.H. Yoo, C. Perera, J. Shen, L. Ye, D.S. Suh, J.L. Jane, Molecular structure of selected tuber and root starches and effect of amylopectin structure on their physical properties. J. Agric. Food Chem. 57, 1556–1564 (2009)

    Article  CAS  PubMed  Google Scholar 

  42. K.N. Jan, P.S. Panesar, S. Singh, Process standardization for isolation of quinoa starch and its characterization in comparison with other starches. J. Food Meas. Charact. 11, 1919–1927 (2017)

    Article  Google Scholar 

  43. M. Shrivastava, R.B. Yadav, B.S. Yadav, N. Dangi, Effect of incorporation of hydrocolloids on the physicochemical, pasting and rheological properties of colocasia starch. J. Food Meas. Charact. 12, 1177–1185 (2018)

    Article  Google Scholar 

  44. M.A. Rao, Rheology of Fluid and Semisolid Foods: Principles and Applications (Springer, New York, 2014)

    Book  Google Scholar 

Download references

Acknowledgements

Authors acknowledge Dr. J.C. Rana (NBPGR, India) for providing amaranth lines/cultivars for this research. KS acknowledge CUP, Bathinda for providing RSM grant and laboratory facilities. NS acknowledge DST, New Delhi for the grant of J.C. Bose Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khetan Shevkani.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevkani, K., Singh, N., Isono, N. et al. Structural and functional properties of amaranth starches from residue obtained during protein extraction. Food Measure 15, 5087–5096 (2021). https://doi.org/10.1007/s11694-021-01070-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-01070-x

Keywords

Navigation