Skip to main content

Advertisement

Log in

Physicochemical and antimicrobial properties of biodegradable films based on gelatin/guar gum incorporated with grape seed oil

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

A Correction to this article was published on 24 January 2023

This article has been updated

Abstract

This research has evaluated the effects of different levels (0.5, 1, and 1.5%) of grape seed oil (GSO) on the various aspects of gelatin/guar gum (GG) based biodegradable films. Bovine gelatin and GG-based biodegradable films incorporated with cold press GSO were prepared through the casting technique. With the increase of GSO concentration tensile strength (TS) (8.32–6.54 MPa), water vapor permeability (4.80–2.65 × 10–10 g mm/m2 h Pa), moisture content (MC) (17.52–15.01%), and solubility in water (36.52–27.25%) decreased significantly (p < 0.05). Structural (SEM, XRD), chemical (FTIR), thermal (DSC), antibacterial properties, and color parameters of films were also investigated. SEM images proved a uniform structure in the gelatin/GG film surface. The incorporation of GSO into the films led to the formation of a slightly porous structure. Total color difference (ΔE) also increased with the level of incorporated GSO (p < 0.05). XRD analysis of films demonstrated a typical semi-crystalline structure. When GSO was incorporated into the film matrix the melting point (Tmax) increased. The gelatin/GG/GSO films showed improved antimicrobial activity against tested both Gram-negative and Gram-positive bacteria. The biological properties of gelatin/GG/GSO films make them a promising material to prevent food spoilage for use in food packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Change history

References

  1. E. Tavassoli-Kafrani, H. Shekarchizadeh, M. Masoudpour-Behabadi, Carbohydr. Polym. (2016). https://doi.org/10.1016/j.carbpol.2015.10.074

    Article  PubMed  Google Scholar 

  2. P.J.P. Espitia, W.X. Du, R. de Jesús Avena-Bustillos, N.D.F.F. Soares, T.H. McHugh, Food hydrocoll. (2014). https://doi.org/10.1016/j.foodhyd.2013.06.005

    Article  Google Scholar 

  3. A. Mehdizadeh, S.A. Shahidi, N. Shariatifar, M. Shiran, A. Ghorbani-HasanSaraei, J. Food Meas. Charact. (2022). https://doi.org/10.1007/s11694-021-01250-9

    Article  Google Scholar 

  4. M.A. Oliveira, M.L. Gonzaga, M.S. Bastos, H.C. Magalhães, S.D. Benevides, R.F. Furtado, R.A. Zambelli, D.S. Garruti, Food Packag. Shelf Life (2020). https://doi.org/10.1016/j.fpsl.2019.100431

    Article  Google Scholar 

  5. E. Khodaman, H. Barzegar, A. Jokar, H. Jooyandeh, J. Food Meas. Charact. (2022). https://doi.org/10.1007/s11694-022-01470-7

    Article  Google Scholar 

  6. M. Gomaa, A.F. Hifney, M.A. Fawzy, K.M. Abdel-Gawad, Food Hydrocoll. (2018). https://doi.org/10.1016/j.foodhyd.2018.03.056

    Article  Google Scholar 

  7. S. Sahraee, J.M. Milani, B. Ghanbarzadeh, H. Hamishehkar, Food Sci. Nutr. (2020). https://doi.org/10.1002/fsn3.1424

    Article  PubMed  PubMed Central  Google Scholar 

  8. A.A. Karim, R. Bhat, Trends Food Sci. Technol. (2008). https://doi.org/10.1016/j.tifs.2008.08.001

    Article  Google Scholar 

  9. A. Etxabide, V. Coma, P. Guerrero, C. Gardrat, K. de la Caba, Food Hydrocoll. (2017). https://doi.org/10.1016/j.foodhyd.2016.11.036

    Article  Google Scholar 

  10. M.D. Khah, B. Ghanbarzadeh, L.R. Nezhad, A. Ostadrahimi, Int. J. Biol. Macromol. (2021). https://doi.org/10.1016/j.ijbiomac.2021.01.020

    Article  PubMed  Google Scholar 

  11. A.A. Tyuftin, J.P. Kerry, Food Packag. Shelf Life (2021). https://doi.org/10.1016/j.fpsl.2021.100688

    Article  Google Scholar 

  12. J.F. Martucci, R.A. Ruseckaite, Polym. Plast. Technol. Eng. (2010). https://doi.org/10.1080/03602551003652730

    Article  Google Scholar 

  13. M. Soltanzadeh, S.H. Peighambardoust, B. Ghanbarzadeh, S. Amjadi, M. Mohammadi, J.M. Lorenzo, H. Hamishehkar, Food Hydrocoll. (2022). https://doi.org/10.1016/j.foodhyd.2022.107620

    Article  Google Scholar 

  14. J. Guo, L. Ge, X. Li, C. Mu, D. Li, Food Hydrocoll. (2014). https://doi.org/10.1016/j.foodhyd.2014.01.026

    Article  Google Scholar 

  15. L. Yavari Maroufi, M. Ghorbani, M. Tabibiazar, Food Bioprocess Technol. (2020). https://doi.org/10.1007/s11947-020-02509-7

    Article  Google Scholar 

  16. L. Nuvoli, P. Conte, C. Fadda, J.A.R. Ruiz, J.M. García, S. Baldino, A. Mannu, Polymer (2021). https://doi.org/10.1016/j.polymer.2020.123244

    Article  Google Scholar 

  17. V.D. Prajapati, G.K. Jani, N.G. Moradiya, N.P. Randeria, B.J. Nagar, N.N. Naikwadi, B.C. Variya, Int. J. Biol. Macromol. (2013). https://doi.org/10.1016/j.ijbiomac.2013.05.017

    Article  PubMed  Google Scholar 

  18. G. Sharma, S. Sharma, A. Kumar, H. Ala’a, M. Naushad, A.A. Ghfar, G.T. Mola, F.J. Stadler, Carbohydr. Polym. (2018). https://doi.org/10.1016/j.carbpol.2018.07.053

    Article  PubMed  Google Scholar 

  19. N. Khan, D. Kumar, P. Kumar, Colloids Interface Sci. Commun. (2020). https://doi.org/10.1016/j.colcom.2020.100242

    Article  Google Scholar 

  20. S. Ramazani, M. Rostami, M. Raeisi, M. Tabibiazar, M. Ghorbani, Food Hydrocoll. (2019). https://doi.org/10.1016/j.foodhyd.2018.12.010

    Article  Google Scholar 

  21. N.M. Oliveira, F.Q. Dourado, A.M. Peres, M.V. Silva, J.M. Maia, J. Teixeira, Food Bioprocess Technol. (2011). https://doi.org/10.1007/s11947-010-0324-6

    Article  Google Scholar 

  22. R.A. Rub, S. Sasikumar, Arab J. Chem. (2016). https://doi.org/10.1016/j.arabjc.2012.04.012

    Article  Google Scholar 

  23. P.K. Binsi, N. Nayak, P.C. Sarkar, C.G. Joshy, G. Ninan, C.N. Ravishankar, J. Food Sci. Technol. (2017). https://doi.org/10.1007/s13197-017-2496-9

    Article  PubMed  PubMed Central  Google Scholar 

  24. R. Niknam, B. Ghanbarzadeh, H. Hamishehkar, Polym. Test. (2019). https://doi.org/10.1016/j.polymertesting.2019.04.015

    Article  Google Scholar 

  25. A. Aydogdu, C.J. Radke, S. Bezci, E. Kirtil, Int. J. Biol. Macromol. (2020). https://doi.org/10.1016/j.ijbiomac.2019.12.255

    Article  PubMed  Google Scholar 

  26. Y. Shen, Z.J. Ni, K. Thakur, J.G. Zhang, F. Hu, Z.J. Wei, Int. J. Biol. Macromol. (2021). https://doi.org/10.1016/j.ijbiomac.2021.03.133

    Article  PubMed  PubMed Central  Google Scholar 

  27. Y. Alparslan, J. Food Meas. Charact. (2018). https://doi.org/10.1007/s11694-017-9643-x

    Article  Google Scholar 

  28. S. Benavides, R. Villalobos-Carvajal, J.E. Reyes, J. Food Eng. (2012). https://doi.org/10.1016/j.jfoodeng.2011.05.023

    Article  Google Scholar 

  29. A. Mehdizadeh, S.A. Shahidi, N. Shariatifar, M. Shiran, A. Ghorbani-HasanSaraei, J. Aquat. Food Prod. Technol. (2022). https://doi.org/10.1080/10498850.2020.1855688

    Article  Google Scholar 

  30. X. Zhang, B.B. Ismail, H. Cheng, T.Z. Jin, M. Qian, S.A. Arabi, D. Liu, M. Guo, Carbohydr. Polym. (2021). https://doi.org/10.1016/j.carbpol.2021.118616

    Article  PubMed  PubMed Central  Google Scholar 

  31. N.M. Dabetic, V.M. Todorovic, I.D. Djuricic, J.A. Antic Stankovic, Z.N. Basic, D.S. Vujovic, S.S. Sobajic, Eur. J. Lipid Sci. Technol. (2020). https://doi.org/10.1002/ejlt.201900447

    Article  Google Scholar 

  32. J. Garavaglia, M.M. Markoski, A. Oliveira, A. Marcadenti, Nutr. Metab. Insights (2016). https://doi.org/10.4137/NMI.S32910

    Article  PubMed  PubMed Central  Google Scholar 

  33. F.B. Shinagawa, F.C.D. Santana, L.R.O. Torres, J. Mancini-Filho, Food Sci. Technol. (2015). https://doi.org/10.1590/1678-457X.6826

    Article  Google Scholar 

  34. ASTM, Manual Book of ASTM Standard (2000)

  35. A. Asdagh, I. Karimi Sani, S. Pirsa, S. Amiri, N. Shariatifar, H. Eghbaljoo-Gharehgheshlaghi, Z. Shabahang, A. Taniyan, J. Polym. Environ. (2021). https://doi.org/10.1007/s10924-020-01882-w

    Article  Google Scholar 

  36. F. Chavoshi, Z. Didar, M. Vazifedoost, M. Shahidi Noghabi, A. Zendehdel, J. Food Meas. Charact. (2022). https://doi.org/10.1007/s11694-022-01533-9

    Article  Google Scholar 

  37. C. Vilas Dhumal, K. Pal, P. Sarkar, J. Mater. Sci. Mater. Med. (2019). https://doi.org/10.1007/s10856-019-6317-8

    Article  PubMed  Google Scholar 

  38. M. Ahmad, S. Benjakul, T. Prodpran, T.W. Agustini, Food Hydrocoll. (2012). https://doi.org/10.1016/j.foodhyd.2011.12.003

    Article  Google Scholar 

  39. P. Tongnuanchan, S. Benjakul, T. Prodpran, K. Nilsuwan, Food Hydrocoll. (2015). https://doi.org/10.1016/j.foodhyd.2015.02.025

    Article  Google Scholar 

  40. S. Javidi, A. Mohammadi Nafchi, H.H. Moghadam, J. Food Meas. Charact. (2022). https://doi.org/10.1007/s11694-021-01217-w

    Article  Google Scholar 

  41. T. Nisar, Z.C. Wang, X. Yang, Y. Tian, M. Iqbal, Y. Guo, Int. J. Biol. Macromol. (2018). https://doi.org/10.1016/j.ijbiomac.2017.08.068

    Article  PubMed  Google Scholar 

  42. L.M. Reyes, M. Landgraf, P.J.D.A. Sobral, Food Packag. Shelf Life (2021). https://doi.org/10.1016/j.fpsl.2020.100607

    Article  Google Scholar 

  43. C. Pires, C. Ramos, G. Teixeira, I. Batista, R. Mendes, L. Nunes, A. Marques, J. Food Eng. (2011). https://doi.org/10.1016/j.jfoodeng.2011.02.036

    Article  Google Scholar 

  44. M. Tanaka, S. Ishizaki, T. Suzuki, R. Takai, J. Tokyo Univ. Fish. 87, 31–38 (2001)

    Google Scholar 

  45. P. Tongnuanchan, S. Benjakul, T. Prodpran, Food Chem. (2012). https://doi.org/10.1016/j.foodchem.2012.03.094

    Article  PubMed  Google Scholar 

  46. G. Kavoosi, A. Rahmatollahi, S.M.M. Dadfar, A.M. Purfard, LWT (2014). https://doi.org/10.1016/j.lwt.2014.02.008

    Article  Google Scholar 

  47. D. Altiok, E. Altiok, F. Tihminlioglu, J. Mater. Sci. Mater. Med. (2010). https://doi.org/10.1007/s10856-010-4065-x

    Article  PubMed  Google Scholar 

  48. J.C. Nunes, P.T.S. Melo, M.V. Lorevice, F.A. Aouada, M.R. de Moura, J. Food Sci. Technol. (2021). https://doi.org/10.1007/s13197-020-04469-4

    Article  PubMed  PubMed Central  Google Scholar 

  49. J.F. Martucci, L.B. Gende, L.M. Neira, R.A. Ruseckaite, Ind. Crops Prod. (2015). https://doi.org/10.1016/j.indcrop.2015.03.079

    Article  Google Scholar 

  50. E. Jamróz, L. Juszczak, M. Kucharek, J. Appl. Polym. Sci. (2018). https://doi.org/10.1002/app.46754

    Article  Google Scholar 

  51. J. Wu, H. Liu, S. Ge, S. Wang, Z. Qin, L. Chen, Q. Zheng, Q. Liu, Q. Zhang, Food Hydrocoll. (2015). https://doi.org/10.1016/j.foodhyd.2014.06.017

    Article  Google Scholar 

  52. Q. Ma, L. Du, L. Wang, Sens. Actuators B Chem. (2017). https://doi.org/10.1016/j.snb.2017.01.035

    Article  PubMed  Google Scholar 

  53. L. Sánchez-González, M. Cháfer, A. Chiralt, C. González-Martínez, Carbohydr. Polym. (2010). https://doi.org/10.1016/j.carbpol.2010.04.047

    Article  Google Scholar 

  54. P. Tongnuanchan, S. Benjakul, T. Prodpran, S. Pisuchpen, K. Osako, Food Hydrocoll. (2016). https://doi.org/10.1016/j.foodhyd.2015.12.005

    Article  Google Scholar 

  55. M.H.R. Barbosa, S.D.A. Goncalves, L. Marangoni Junior, R.M.V. Alves, R.P. Vieira, J. Food Meas. Charact. (2022). https://doi.org/10.1007/s11694-022-01337-x

    Article  Google Scholar 

  56. H. Abbasi, H. Fahim, M. Mahboubi, J. Food Meas. Charact. (2021). https://doi.org/10.1007/s11694-020-00799-1

    Article  Google Scholar 

  57. W.X. Du, C.W. Olsen, R.J. Avena-Bustillos, T.H. McHugh, C.E. Levin, M. Friedman, J. Food Sci. (2009). https://doi.org/10.1111/j.1750-3841.2009.01282.x

    Article  PubMed  Google Scholar 

  58. Y.A. Arfat, S. Benjakul, T. Prodpran, P. Sumpavapol, P. Songtipya, Food Hydrocoll. (2014). https://doi.org/10.1016/j.foodhyd.2014.04.023

    Article  Google Scholar 

  59. M. Ejaz, Y.A. Arfat, M. Mulla, J. Ahmed, Food Packag. Shelf Life (2018). https://doi.org/10.1016/j.fpsl.2017.12.004

    Article  Google Scholar 

  60. A. Tügen, B. Ocak, Ö. Özdestan-Ocak, J. Food Meas. Charact. (2020). https://doi.org/10.1007/s11694-020-00547-5

    Article  Google Scholar 

  61. Y. Shahbazi, N. Shavisi, N. Karami, R. Lorestani, F. Dabirian, LWT (2021). https://doi.org/10.1016/j.lwt.2021.112322

    Article  Google Scholar 

  62. S. Amjadi, H. Almasi, B. Pourfathi, S. Ranjbaryan, J. Polym. Environ. (2021). https://doi.org/10.1007/s10924-021-02097-3

    Article  Google Scholar 

  63. E.M.C. Alexandre, R.V. Lourenço, A.M.Q.B. Bittante, I.C.F. Moraes, P.J. do Amaral Sobral, Food Packag Shelf Life (2016). https://doi.org/10.1016/j.fpsl.2016.10.004

    Article  Google Scholar 

  64. M.F.Z. Kadir, Ionics (2021). https://doi.org/10.1007/s11581-021-03992-4

    Article  Google Scholar 

  65. J. Ahmed, M.Z. Mulla, Y.A. Arfat, Food Control (2016). https://doi.org/10.1016/j.foodcont.2016.05.013

    Article  Google Scholar 

  66. H.S. Canbay, B. Bardakci, Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi 6(2), 140–148 (2011)

    CAS  Google Scholar 

  67. W. Ma, C.H. Tang, S.W. Yin, X.Q. Yang, Q. Wang, F. Liu, Z.H. Wei, Food Res. Int. (2012). https://doi.org/10.1016/j.foodres.2012.07.037

    Article  Google Scholar 

  68. M. Pirnia, K. Shirani, F.T. Yazdi, S.A. Moratazavi, M. Mohebbi, Food Chem. (2022). https://doi.org/10.1016/j.fochx.2022.100300

    Article  Google Scholar 

  69. M. Ghasemlou, N. Aliheidari, R. Fahmi, S. Shojaee-Aliabadi, B. Keshavarz, M.J. Cran, R. Khaksar, Carbohydr. Polym. (2013). https://doi.org/10.1016/j.carbpol.2013.07.026

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank the staff at Bursa Technical University Central Research Laboratory for their technical assistance for SEM, XRD, DSC, FTIR, and tensile analysis. I thank Dr. Hüseyin Ertap for his help in graphic design.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neslihan Mutlu.

Ethics declarations

Competing ınterests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original article has been corrected to update text in Materials and Methods/Antimicrobial Properties section.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mutlu, N. Physicochemical and antimicrobial properties of biodegradable films based on gelatin/guar gum incorporated with grape seed oil. Food Measure 17, 1515–1525 (2023). https://doi.org/10.1007/s11694-022-01726-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01726-2

Keywords

Navigation