Skip to main content

Advertisement

Log in

Fabrication and characterization of composite film based on gelatin and electrospun cellulose acetate fibers incorporating essential oil

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

In this research, Oliveria decumbens Vent essential oil (OEO) at 0–45% w/w was encapsulated in cellulose acetate (CA) electrospun fibers and then incorporated in gelatin-based films. Scanning Electron Microscope (SEM) showed more uniform and compact surface in the neat gelatin film in comparison to the CA fiber loaded composite ones and microfibers were perpendicular to the fracture surface. The composites showed higher tensile strength (1.3–2.6 MPa) and lower elongation (less than 1%) than the pure gelatin film. Water solubility of the composites were significantly lower than the gelatin film (81% VS. ≈50%). The water vapor permeability (WVP) of composites was higher than the gelatin film probably due to microscopic pinholes induced by fibers, however WVP slightly decreased by increasing OEO. The contact angle values from 79.9 to 101.5° indicating increase of hydrophobicity by incorporating the CA fibers. Inhibition zones against E. coli and S. aureus (13.33 mm) confirmed the antibacterial activity of composites. It can be concluded that the composite gelatin films incorporating EO-loaded electrospun fibers could enhance the mechanical and antimicrobial properties of the composites despite increasing WVP, thus they could be potentially used for food active packaging purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Abedinia, F. Ariffin, N. Huda, A.M. Nafchi, Int. J. Biol. Macromol. 109, 855 (2018)

    Article  CAS  Google Scholar 

  2. K.J. Figueroa-Lopez, J.L. Castro-Mayorga, M.M. Andrade-Mahecha, L. Cabedo, J.M. Lagaron, Nanomaterials 8(4), 199 (2018). https://doi.org/10.3390/nano8040199

    Article  CAS  PubMed Central  Google Scholar 

  3. M. HojjatiM. Ghodsi. in 2nd International and 6th National Conference of Organic vs. Conventional Agriculture. Iran. (2019)

  4. A. Yilmaz, F. Bozkurt, P.K. Cicek, E. Dertli, M.Z. Durak, M.T. Yilmaz, Innov. Food Sci. Emerg. Technol. 37, 74 (2016). https://doi.org/10.1016/j.ifset.2016.08.008

    Article  CAS  Google Scholar 

  5. J. Cai, J. Chen, Q. Zhang, M. Lei, J. He, A. Xiao, C. Ma, S. LiH, Xiong, , Carbohydr. Polym. 140, 238 (2016). https://doi.org/10.1016/j.carbpol.2015.12.039

    Article  CAS  PubMed  Google Scholar 

  6. Y. Alparslan, J. Food Meas. Charact. 12(1), 317 (2018)

    Article  Google Scholar 

  7. Z. Didar, J. Food Bioproc. Eng. 2(2), 113 (2019)

    Google Scholar 

  8. A. Tügen, B. OcakÖ. Özdestan-Ocak, J. Food Meas. Charact. 1 (2020).

  9. A. Abedinia, A.M. Nafchi, M. Sharifi, P. Ghalambor, N. Oladzadabbasabadi, F. Ariffin N. Huda, Trends Food Sci. Technol. (2020).

  10. S.N. Syahida, M.R. Ismail-Fitry, Z.M.A.A. Ainun, Z.A.N. Hanani, Food Packag Shelf Life. 23, 100437 (2020). https://doi.org/10.1016/j.fpsl.2019.100437

    Article  Google Scholar 

  11. K. Li, S. Jin, H. Chen, J. Li, Compos. B. Eng. 171, 222 (2019)

    Article  CAS  Google Scholar 

  12. Y. Wang, R. Zhang, W. Qin, J. Dai, Q. Zhang, K. Lee, Y. Liu, Mater. Design. 185, 108277 (2020)

    Article  CAS  Google Scholar 

  13. D. HaldarM.K. Purkait, Carbohydr. Polym.116937 (2020).

  14. C.C. Pola, E.A. Medeiros, O.L. Pereira, V.G. Souza, C.G. Otoni, G.P. Camilloto, N.F. Soares, Food Packag. Shelf Life. 9, 69 (2016). https://doi.org/10.1016/j.fpsl.2016.07.001

    Article  Google Scholar 

  15. H.M. Azeredo, M.F. Rosam, L.H. Mattoso, Ind. Crops Prod. 97, 664 (2017). https://doi.org/10.1016/j.indcrop.2016.03.013

    Article  CAS  Google Scholar 

  16. B. Pant, M. ParkS.-J. Park, , Pharm. 11(7), 305 (2019)

    CAS  Google Scholar 

  17. D.A. Schmatz, J.A.V. Costa, M.G. de Morais, Food Packag. Shelf Life. 20, 100314 (2019). https://doi.org/10.1016/j.fpsl.2019.100314

    Article  Google Scholar 

  18. M.M. Mehanna, Int. J. Pharm. Investig. 10(1), 82 (2020)

    Article  CAS  Google Scholar 

  19. G. ChenH, Liu, , J. Appl. Polym. Sci. 110(2), 641 (2008). https://doi.org/10.1002/app.28703

    Article  CAS  Google Scholar 

  20. ASTM, Standard Test Methods for Water Vapor Transmission of Materials. Standard designation E96 / E96M-16, in Annual Book of ASTM Standards. 2016, ASTM International: West Conshohocken, PA,.

  21. M. Rezaei, A. Motamedzadegan, World J. Nano Sci. Eng. (2015). https://doi.org/10.4236/wjnse.2015.54019

    Article  Google Scholar 

  22. K.M. Soto, M. Hernández-Iturriaga, G. Loarca-Piña, G. Luna-Bárcenas, C.A. Gómez-Aldapa, S. Mendoza, J. Food Sci. Technol. 53(10), 3787 (2016). https://doi.org/10.1007/s13197-016-2365-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. ASTM, Standard test method for tensile properties of thin plastic sheeting. Standard designation D882–18, in In Annual Book of ASTM Standards. 2018, American Society for Testing and Materials: West Conshohocken, PA, 2018.

  24. H. Shahiri Tabarestani, N. Sedaghat, M. Jahanshahi, A. Motamedzadegan, M. Mohebbi, J Aquat. Food Produc. Technol. 26(10), 1244 (2017). https://doi.org/10.1080/10498850.2015.1126664

    Article  CAS  Google Scholar 

  25. M. Ahmad, S. Benjakul, T. Prodpran, T.W. Agustini, Food Hydrocoll. 28(1), 189 (2012). https://doi.org/10.1016/j.foodhyd.2011.12.003

    Article  CAS  Google Scholar 

  26. R. Carvalho, P. Sobral, M. Thomazine, A. Habitante, B. Giménez, M. Gómez-Guillén, Montero. Food Hydrocoll. 22(6), 1117 (2008). https://doi.org/10.1016/j.foodhyd.2007.06.003

    Article  CAS  Google Scholar 

  27. A. Abdulkhani, J. Hosseinzadeh, A. Ashori, S. Dadashi, Z. Takzare, Polym Test. 35, 73 (2014). https://doi.org/10.1016/j.polymertesting.2014.03.002

    Article  CAS  Google Scholar 

  28. R.J. Shakila, E. Jeevithan, A. Varatharajakumar, G. Jeyasekaran, D. Sukumar, Food Chem. 135(4), 2260 (2012). https://doi.org/10.1016/j.foodchem.2012.07.069

    Article  CAS  Google Scholar 

  29. Z.N. Hanani, Y. Roos, J.P. Kerry, Food Hydrocoll. 29(1), 144 (2012). https://doi.org/10.1016/j.foodhyd.2012.01.015

    Article  CAS  Google Scholar 

  30. N. Thakur, A. Sargur Ranganath, K. Sopiha, A. Baji, ACS Appl. Mater. Interfaces. 9(34), 29224 (2017). https://doi.org/10.1021/acsami.7b07559

    Article  CAS  PubMed  Google Scholar 

  31. K.Y. Lee, J. Shim, H.G. Lee, Carbohydr. Polym. 56(2), 251 (2004). https://doi.org/10.1016/j.carbpol.2003.04.001

    Article  CAS  Google Scholar 

  32. M. Pereda, A. Ponce, N. Marcovich, R. Ruseckaite, J. Martucci, Food Hydrocoll. 25(5), 1372 (2011). https://doi.org/10.1016/j.foodhyd.2011.01.001

    Article  CAS  Google Scholar 

  33. J.-W. Rhim, J.H. Lee, P.K. Ng, LWT-Food Sci. Technol. 40(2), 232 (2007). https://doi.org/10.1016/j.lwt.2005.10.002

    Article  CAS  Google Scholar 

  34. S.F. Hosseini, M. Rezaei, M. Zandi, F. Farahmandghavi, Food Hydrocoll. 44, 172 (2015). https://doi.org/10.1016/j.foodhyd.2014.09.004

    Article  CAS  Google Scholar 

  35. P. Tongnuanchan, S. Benjakul, T. Prodpran, Food Hydrocoll. 41, 33 (2014). https://doi.org/10.1016/j.foodhyd.2014.03.015

    Article  CAS  Google Scholar 

  36. H. Liao, Y. Wu, M. Wu, X. Zhan, H. Liu, Cellulose 19(1), 111 (2012). https://doi.org/10.1016/j.foodhyd.2014.03.015

    Article  CAS  Google Scholar 

  37. D.A. Stone, N.D. Wanasekara, D.H. Jones, N.R. Wheeler, E. Wilusz, W. Zukas, G.E. Wnek, L. Korley, ACS Macro Lett. 1(1), 80 (2012). https://doi.org/10.1021/mz200049v

    Article  CAS  Google Scholar 

  38. I. Liakos, L. Rizzello, H. Hajiali, V. Brunetti, R. Carzino, P. Pompa, A. Athanassiou, E. Mele, J. Mater. Chem. B. 3(8), 1583 (2015). https://doi.org/10.1039/C4TB01974A

    Article  CAS  PubMed  Google Scholar 

  39. H. Sereshti, Y. Izadmanesh, S. Samadi, J. Chromatogr. A. 1218(29), 4593 (2011). https://doi.org/10.1016/j.chroma.2011.05.037

    Article  CAS  PubMed  Google Scholar 

  40. J.B. Custódio, M.V. Ribeiro, F.S. Silva, M. Machado, M.C. Sousa, J. Exp. Pharmacol. 3, 69 (2011). https://doi.org/10.2147/jep.s16387

    Article  PubMed  PubMed Central  Google Scholar 

  41. H. Kamal, J. Radiat. Res. Appl. Sci. 7(2), 146 (2014). https://doi.org/10.1016/j.jrras.2014.01.003

    Article  CAS  Google Scholar 

  42. I. Yakimets, N. Wellner, A.C. Smith, R.H. Wilson, I. Farhat, J. Mitchell, Polym. 46(26), 12577 (2005). https://doi.org/10.1016/j.polymer.2005.10.090

    Article  CAS  Google Scholar 

  43. C. Yang, X. Wu, Y. Zhao, L. Xu, S. Wei, J. Appl. Poly. Sci. 121(5), 3047 (2011). https://doi.org/10.1002/app.33934

    Article  CAS  Google Scholar 

  44. L. Zhang, Y.-L. Hsieh, J. Nanosci. Nanotechnol. 8(9), 4461 (2008). https://doi.org/10.1166/jnn.2008.285

    Article  CAS  PubMed  Google Scholar 

  45. P. Wang, H. Wang, J. Liu, P. Wang, S. Jiang, X. Li, S. Jiang, Carbohydr. polym. 181, 885 (2018). https://doi.org/10.1016/j.carbpol.2017.11.063

    Article  CAS  PubMed  Google Scholar 

  46. A. Dufresne, D. Dupeyre, M. Paillet, J. Appl. Polym. Sci. 87(8), 1302 (2003). https://doi.org/10.1002/app.11546

    Article  CAS  Google Scholar 

  47. S. Sahraee, J.M. Milani, B. GhanbarzadehH, Hamishehkar. LWT-Food Science. Technology. 76, 33 (2017). https://doi.org/10.1016/j.lwt.2016.10.028

    Article  CAS  Google Scholar 

  48. A. Ait-Ouazzou, L. Cherrat, L. Espina, S. Lorán, C. Rota, R. Pagán, Innov. Food Sci. & Emerg. Technol. 12(3), 320 (2011). https://doi.org/10.1016/j.ifset.2011.04.004

    Article  CAS  Google Scholar 

  49. G. Amin, M.H.S. Sourmaghi, M. Zahedi, M. Khanavi, N. Samadi, Fitoterapia 76(7), 704 (2005). https://doi.org/10.1016/j.fitote.2005.06.009

    Article  CAS  PubMed  Google Scholar 

  50. H. Esmaeili, A. Karami, F. Maggi, J. Clean. Prod. 198, 91 (2018). https://doi.org/10.1016/j.jclepro.2018.07.029

    Article  CAS  Google Scholar 

  51. W. Cui, Y. Zhou, J. Chang, Sci. Technol. Adv. Mater. 11(1), 014108 (2010). https://doi.org/10.1088/1468-6996/11/1/014108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. K.A. Rieger, J.D. Schiffman, Carbohydr. polym. 113, 561 (2014). https://doi.org/10.1016/j.carbpol.2014.06.075

    Article  CAS  PubMed  Google Scholar 

  53. C.L. Mori, N.A.D. Passos, J.E. Oliveira, T.F. Altoé, F.A. Mori, L.H.C. Mattoso, J.R. Scolforo, G.H.D. Tonoli, J. Nanomater. 16(1), 33 (2015). https://doi.org/10.1155/2015/439253

    Article  CAS  Google Scholar 

  54. P. Wen, D.-H. Zhu, H. Wu, M.-H. Zong, Y.-R. Jing, S.-Y. Han, Food Control 59, 366 (2016). https://doi.org/10.1016/j.foodcont.2015.06.005

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Jundi-Shapur University of Technology, (Project No. 96–2-395–02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib Abbasi.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, H., Fahim, H. & Mahboubi, M. Fabrication and characterization of composite film based on gelatin and electrospun cellulose acetate fibers incorporating essential oil. Food Measure 15, 2108–2118 (2021). https://doi.org/10.1007/s11694-020-00799-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00799-1

Keywords

Navigation