Skip to main content
Log in

The Thermodynamic Properties of Niobium

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The thermodynamic properties of niobium have been evaluated to 5200 K. Selected values include an enthalpy of sublimation of 732 ± 10 kJ/mol at 298.15 K and a boiling point at one atmosphere pressure of 5197 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J.W. Arblaster, Thermodynamic Properties of Silver, J. Phase Equilib. Diffus., 2015, 36(6), p 573-591

    Article  Google Scholar 

  2. J.W. Arblaster, Thermodynamic Properties of Gold, J. Phase Equilib. Diffus., 2016, 37(2), p 229-245

    Article  Google Scholar 

  3. J.W. Arblaster, Thermodynamic Properties of Beryllium, J. Phase Equilib. Diffus., 2016, 37(5), p 581-591

    Article  Google Scholar 

  4. J.W. Arblaster, Thermodynamic Properties of Copper, J. Phase Equilib. Diffus., 2015, 36(5), p 422-444

    Article  Google Scholar 

  5. J.W. Arblaster, Thermodynamic Properties of Hafnium, J. Phase Equilib. Diffus., 2014, 35(4), p 490-501

    Article  Google Scholar 

  6. J.W. Arblaster, Thermodynamic Properties of Vanadium, J. Phase Equilib. Diffus., 2017, 38(1), p 51-64

    Article  Google Scholar 

  7. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelley, and D.D. Wagman, Selected Values of the Thermodynamic Properties of the Elements, American Society for Metals, Metals Park, 1973

    Google Scholar 

  8. L.V. Gurvich, I.V. Veits, V.A. Medvedev, G.A. Bergman, V.S. Yungman, G.A. Khachkuruzov, V.S. Yorish, O.V. Dorofeeva, E.L. Osina, P.I. Tolmach, I.N. Przhevak’skii, I.I. Nazarenko, N.M. Aristova, E.A. Shenyavskaya, L.N. Gorokhov, A.L. Rogatskii, M.E. Efimov, V.Y. Leonidov, Y.G. Khait, A.G. Efimova, S.E. Tomberg, A.V. Gusarov, N.E. Khandamirova, G.N. Yurkov, L.R. Fokin, L.F. Kuratova, and A.D. Gol’dshtein, Thermodynamic Properties of Individual Substances, Vol 4, V.P. Glushko, L.V. Gurvich, G.A. Bergman, I.V. Veits, V.A. Medvedev, A. Khachkuruzov, and V.S. Yungman, Ed., “Nauka”, Moscow, 1982,

    Google Scholar 

  9. A.P. Grischuk, E.B. Zaretski, M.N. Kalyuzhni, L.N. Latyev, S.V. Onufriev, V.A. Petukov, V.E. Peletski, D.V. Tivadze, V.Y. Chekovskoi, A.V. Elyutin, M.I. Ivanova, L.I. Voronenko, A.G. Libinson, in Standard Reference Data on Physical Constants and Properties of Substances and Materials (GSSSD), Niobium. Physical Properties, GSSSD 121-88 (1988)

  10. M.W. Chase Jr, NIST-JANAF Thermochemical Tables, 4th edn. J. Phys. Chem. Ref. Data, Monograph No. 9 (1998)

  11. V.A. Kirillin, A.E. Sheindlin, V.Y. Chekovskoi, and I.A. Zhukova, Thermodynamic properties of niobium from 0°K to the melting point at 2740°K, Advances in Thermophysical Properties at Extreme Temperatures and Pressures, Third Symposium on Thermophysical Properties, 22–25 Mar 1965, Purdue University, Lafayette, Indiana, S. Gratch, Ed., The American Society of Mechanical Engineers, New York, 1965, p 152-155

    Google Scholar 

  12. V.A. Kirillin, A.E. Sheindlin, V.Y. Chekhovskoi, I.A. Zhukova, The thermodynamic properties of niobium in the temperature range from 0°K to the melting point 2740°K. Teplofiz. Vys. Temp., 1965, 3, p 860–865 (High Temp., 1965, 3, p 801–805)

  13. K.D. Maglić, Recommended Specific Heat Capacity Functions of Group VA Elements, Int. J. Thermophys., 2003, 24, p 489-500

    Article  Google Scholar 

  14. R.E. Bedford, G. Bonnier, H. Maas, and F. Pavese, Recommended Values of Temperature on the International Temperature Scale of 1990 for a Selected Set of Secondary Reference Points, Metrologia, 1996, 33, p 133-154

    Article  ADS  Google Scholar 

  15. Commission on Isotopic Abundances and Atomic Weights (CIAAW), Atomic Weights of the Elements 2015 (2015). http://ciaaw.org/atomic-weights.htm

  16. T.B. Douglas, Conversion of Existing Calorimetrically Determined Thermodynamic Properties to the Basis of the International Practical Temperature Scale of 1968, J. Res. Natl. Bur. Stand., 1969, 73A, p 451-470

    Article  Google Scholar 

  17. R.L. Rusby, The Conversion of Thermal Reference Values to the ITS-90, J. Chem. Thermodyn., 1991, 23, p 1153-1161

    Article  Google Scholar 

  18. R.L. Rusby, R.P. Hudson, and M. Durieux, Revised Values for (t90–t68) from 630°C to 1064°C, Metrologia, 1994, 31, p 149-153

    Article  ADS  Google Scholar 

  19. R.D. Weir and R.N. Goldberg, On the Conversion of Thermodynamic Properties to the Basis of the International Temperature Scale of 1990, J. Chem. Thermodyn., 1996, 28, p 261-276

    Article  Google Scholar 

  20. R.K. Bollinger, B.D. White, J.J. Neumeier, H.R.Z. Sandim, Y. Susuki, C.A.M. dos Santos, R. Avci, A. Migliori, and J.B. Betts, Observation of a Martensitic Structural Distortion in V, Nb and Ta, Phys. Rev. Lett., 2011, 107, p 075503-1-075503-4

    Article  ADS  Google Scholar 

  21. Y.M. Smirnov, V.A. Finkel’, Crystal Structure of Tantalum, Niobium and Vanadium at 110 to 400°K. Zh. Eksp. Teor. Fiz., 1965, 49, p 1077–1082 (Sov.Phys. – JETP, 1966, 25, p 750–753)

  22. R. Roberge, Lattice Parameter of Niobium Between 4.2 and 300 K, J. Less Common Metals., 1975, 40, p 161-164

    Article  Google Scholar 

  23. F. Cordero, On the Recently Proposed Matensitic: Like Structural Transformation in V, Nb and Ta. Preprint arXiv:1209.0323v1 [cond-mat.mtrl-sci] (2012)

  24. G.J. Sellers, A.C. Anderson, and H.K. Birnbaum, Anomalous Heat Capacities of Niobium and Tantalum Below 1 K, Phys. Rev. B, 1974, 10, p 2771-2776

    Article  ADS  Google Scholar 

  25. G.J. Sellers, A.C. Anderson, and H.K. Birnbaum, The Anomalous Heat Capacity of Superconducting Niobium, Phys. Lett. A, 1973, 44, p 173-174

    Article  ADS  Google Scholar 

  26. D.P. Almond, M.J. Lea, and E.R. Dobbs, Ultrasonic Evidence Against Multiple Energy Gaps in Superconducting Niobium, Phys. Rev. Lett., 1972, 29, p 764-767

    Article  ADS  Google Scholar 

  27. D.P. Almond, M.J. Lea, and E.R. Dobbs, Ultrasonic Evidence Against Multiple Energy Gaps in Superconducting Niobium, Low Temperature Physics: LT 13, Proceedings of the XIIIth International Conference on Low Temperature Physics, Vol. 3, University of Colorado, Boulder, Colorado, 21–25 Aug. 1972 Superconductivity, K.D. Timmerhaus, W.J. O’Sullivan, and E.F. Hammel, Ed., Plenum Press, New York, 1974, p 367-371

    Google Scholar 

  28. L.Y.L. Shen, Superconductivity of Tantalum, Niobium and Lanthanum Studied by Electron Tunneling: Problems of Surface Contamination. Superconductivity in d- and f-Band Metals, AIP Conference Proceedings No. 4, Rochester, New York, 29–30 Oct 1971, D.H. Douglass, Ed., American Institute of Physics, New York, 1972, p 31-44

    Google Scholar 

  29. M.H. Frommer, J. Bostock, K. Agyeman, R.M. Rose, and M.L.A. MacVicar, On the Absence of an S-Band Energy Gap in Niobium, Solid State Commun., 1973, 13, p 1357-1359

    Article  ADS  Google Scholar 

  30. A.C. Anderson, C.B. Satterthwaite, and S.C. Smith, Thermal Conductivity of Superconducting Niobium, Phys. Rev. B, 1971, 3, p 3762-3764

    Article  ADS  Google Scholar 

  31. A.C. Anderson and S.C. Smith, Effect of Dislocations on the Lattice Thermal Conductivity of Superconducting Niobium, J. Phys. Chem. Solids, 1973, 111, p 111-122

    Article  Google Scholar 

  32. C.E. Gough, The Specific Heat of Very Pure Niobium in the Meisner and Mixed States, Low Temperature Physics: LT 13, Proceedings of the XIIIth International Conference on Low Temperature Physics, University of Colorado, Boulder, Colorado, 21–25 Aug. 1972, Vol. 3: Superconductivity, K.D. Timmerhaus, W.J. O’Sullivan, and E.F. Hammel, Ed., Plenum Press, New York, 1974, p 112-115

    Google Scholar 

  33. V. Novotny and P.P.M. Meincke, Single Superconducting Energy Gap in Niobium, J. Low Temp. Phys., 1975, 18, p 147-157

    Article  ADS  Google Scholar 

  34. G.J. Sellers, Low Temperature Anomalies in Niobium, Vanadium and Tantalum, Ph.D.Thesis, University of Illinois at Urbana-Champaign, Urbana, Illinois, 1975

  35. Y.L. Shen, Low Temperature Heat Capacities of Vanadium, Niobium and Tantalum, Ph.D. Thesis, University of California, Lawrence Radiation Laboratory, Berkeley, California. US Atomic Energy Commission Rept. UCRL-16117, 1965

  36. H.A. Leupold, G.J. Iafrate, F. Rothwarf, J.T. Breslin, D. Edmiston, and T.R. AuCoin, Low-Temperature Specific Heat Anomalies in the Group V Transition Metals, J. Low Temp. Phys., 1977, 28, p 241-261

    Article  ADS  Google Scholar 

  37. N.E. Phillips, Low Temperature Heat Capacity of Metals, CRC Crit. Rev. Solid State Sci., 1972, 2, p 467-553

    Article  ADS  Google Scholar 

  38. G.A. Alers, Use of Sound Velocity Measurements in Determining the Debye Temperature of Solids, Physical Acoustics: Principles and Methods, Vol. III, Part B: Lattice Dynamics, W.P. Mason, Ed., Academic Press, New York, 1965, p 1-42

    Google Scholar 

  39. G.A. Alers and D.L. Waldorf, Variation of the Elastic Moduli at the Superconducting Transition, Phys. Rev. Lett., 1961, 6, p 677-679

    Article  ADS  Google Scholar 

  40. K. Clusius, P. Franzosini, and U. Piesbergen, Ergebnisse der Tieftemperaturforschung XXXII. Die Atom- und Elektronenwärme des Vanadins und Niobs zwischen 10 und 273 K, Die Naturforsch, 1960, 15a, p 728-734

    ADS  Google Scholar 

  41. V.I. Ovcharenko, V.A. Pervakov, Lattice heat capacity of niobium in the temperature range 10–300 K. Fiz. Metal. Metalloved., 1982, 54, p 78–83 (Phys. Met. Metall. 1982, 54(1), p 69–74)

  42. F.S. Rakhmenkulov, I.E. Paukov, Thermodynamic properties of niobium at 10.8–346.5 K. Zh. Fiz. Khim., 1982, 56, p 2283–2284 (Russ. J. Phys. Chem. 1982, 56, p 1393)

  43. J.F. Silva, E.A. Burgemeister, and Z. Dokoupil, Low Temperature Specific Heat of Annealed High Purity Niobium in Magnetic Fields, Physica, 1969, 41, p 409-439

    Article  ADS  Google Scholar 

  44. B.J.C. Van Der Hoeven Jr, and P.H. Keesom, Specific Heat of Niobium Between 0.4 and 4.2 K, Phys. Rev., 1964, 134, p A1320-A1321

    Article  Google Scholar 

  45. H.A. Leupold and H.A. Boorse, Superconducting and Normal Specific Heats of a Single Crystal of Niobium, Phys. Rev., 1964, 134, p A1322-A1328

    Article  ADS  Google Scholar 

  46. E. Bucher, F. Heiniger, and J. Muller, Low Temperature Specific Heat of Solid Solutions of the Third Transition Series, Low Temperature Physics LT9, Proceedings of the IXth International Conference on Low- Temperature Physics, Part B, Columbus, Ohio, 31 Aug. to 4 Sep. 1964, J.G. Daunt, D.O. Edwards, F.J. Milford, and M. Yaqub, Ed., Plenum Press, New York, 1965, p 1059-1065

    Google Scholar 

  47. L.Y.L. Shen, N.M. Senozan, and N.E. Phillips, Evidence for Two Energy Gaps in High Purity Superconducting Nb, Ta and V, Phys. Rev. Lett., 1965, 14, p 1025-1027

    Article  ADS  Google Scholar 

  48. F.Heiniger. Unpublished. Quoted by F. Heiniger, E. Bucher, J. Muller, Low temperature specific heat of transition metals and alloys. Phys. Kondens. Mat., 1966, 5, p 243–284

  49. F. Heiniger, E. Bucher, and J. Muller, Low Temperature Specific Heat of Transition Metals and Alloys, Phys. Kondens. Mat., 1966, 5, p 243-284

    Google Scholar 

  50. Y. Kimura, T. Ohtsuka, T. Matsui, and T. Mizusaki, The Normal State Specific Heat of Niobium–Tantalum Alloys, Phys. Lett. A, 1969, 29, p 284-285

    Article  ADS  Google Scholar 

  51. C. Chou, D. White, and H.L. Johnston, Heat Capacity in the Normal and Superconducting States and Critical Field of Niobium, Phys. Rev., 1958, 109, p 788-796

    Article  ADS  Google Scholar 

  52. A.E. Sheindlin, B.Y. Berezin, and V.Y. Chekhovskoi, Enthalpy of Niobium in the Solid and Liquid State, High Temp. High Press., 1972, 4, p 611-619

    Google Scholar 

  53. B.Y. Berezin, V.Y. Chekhovskoi, Enthalpy and heat capacity of niobium and vanadium in the region from 298.15°K to the melting point. Teplofiz.Vys.Temp. 15, 772–778 (1977) (High Temp. 1977, 15, 651–656)

  54. G. Betz and M.G. Frohberg, Enthalpy Measurements on Solid and Liquid Niobium by Means of Levitation Calorimetry, Z. Metallkde., 1980, 71, p 451-455

    Google Scholar 

  55. I.I. Novikov, V.V. Roshchupkin, A.G. Mozgovoi, N.A. Semashko, Specific heat of nickel and niobium in the temperature interval 300–1300°K. Teplofiz. Vys. Temp., 1981, 19, p 958–962 (High Temp. 1981, 19, p 694–697)

  56. K.D. Maglić, N.L. Perović, G.S. Vuković, and L.P. Zeković, Specific Heat and Electrical Resistivity of Niobium Measured by Subsecond Calorimetric Technique, Int. J. Thermophys., 1994, 15, p 963-972

    Article  ADS  Google Scholar 

  57. V.A. Kirillin, A.E. Sheindlin, V.Y. Chekhovskoi, I.A. Zhukova, Experimental Determination of the Enthalpy of Niobium in the Temperature Range 600–2600°K. Teplofiz. Vys. Temp., 1965, 3, p 395–400 (High Temp. 1965, 3, p 357–363)

  58. F. Righini, J. Spišiak, G.C. Bussolino, and M. Gualono, Thermophysical Properties by a Pulse-Heating Reflectometric Technique: Niobium, 1100 to 2700 K, Int. J. Thermophys., 1999, 20, p 1107-1116

    Article  Google Scholar 

  59. J.B. Conway and R.A. Hein, Enthalpy Measurements of Solid Materials to 2400°C by Means of a Drop Technique, Advances in Thermophysical Properties at Extreme Temperatures and Pressures, Third Symposium on Thermophysical Properties 22–25 Mar 1965, Purdue University, Lafayette, Indiana, S. Gratch, Ed., American Society of Mechanical Engineers, New York, 1965, p 131-137

    Google Scholar 

  60. M. Hoch, The High Temperature Specific Heats of Body-Centred Cubic Refractory Metals, High Temp. High Press., 1969, 1, p 531-542

    Google Scholar 

  61. D.W. Bonnell, Property Measurements at High Temperatures: Levitation Calorimetry Studies of Liquid Metals, Ph.D. Thesis, Rice University, Houston, Texas, 1972

  62. A. Cezairliyan and J.L. McClure, Heat Capacity and Electrical Resistivity of Liquid Niobium Near its Melting Point, Int. J. Thermophys., 1987, 8, p 803-808

    Article  ADS  Google Scholar 

  63. P.-F. Paradis, T. Ishikawa, and S. Yoda, Non-Contact Measurements of Thermophysical Properties of Niobium at High Temperature, J. Mater. Sci., 2001, 36, p 5125-5130

    Article  ADS  Google Scholar 

  64. G.I. Mozharov, A.I. Savvatimskii, Specific Heat of Solid and Liquid Niobium to 5000°K. Teplofiz. Vys. Temp., 1981, 19, p 954–957 (High Temp. 1981, 19, p 691–694)

  65. K. Schaefers, M. Rösner-Kuhn, and M.G. Frohberg, Enthalpy Measurements of Undercooled Melts by Levitation Calorimetry: The Pure Metals Nickel, Iron, Vanadium and Niobium, Mater. Sci. Eng., A, 1995, 197, p 83-90

    Article  Google Scholar 

  66. B. Wilthan, C. Cagran, and G. Pottlacher, Combined DSC and Pulse-Heating Measurements of Electrical Resistivity and Enthalpy of Tungsten, Niobium and Titanium, Int. J. Thermophys., 2005, 26, p 1017-1029

    Article  ADS  Google Scholar 

  67. K. Boboridis, Thermophysical Property Measurements on Niobium and Titanium by a Microsecond-Resolution Pulse-Heating Technique Using High-Speed Laser Polarimetry and Radiation Thermometry, Int. J. Thermophys., 2002, 23, p 277-291

    Article  Google Scholar 

  68. J.W. Shaner, G.R. Gathers, and W.M. Hogson, Thermophysical Properties on Liquid Metals Above 4000 K, Proceedings of the Seventh Symposium on Thermophysical Properties, Gaithersburg, Maryland, May 1977, A. Cezairliyan, Ed., American Society of Mechanical Engineers (ASME), New York, 1977, p 896-903

    Google Scholar 

  69. A.I. Savvatimskii, Heat of Melting and Electrical Conductivity of Niobium and Rhodium at the Melting Point. Teplofiz. Vys. Temp., 1973, 11, p 1182–1187 (High Temp. 1973, 11, p 1057–1062)

  70. M.M. Martynyuk, V.I. Tsapkov, Relationship Between the Electrical Resistivity of Niobium, Tantalum, Molybdenum and Tungsten and their Enthalpy. Izv. Akad. Nauk SSSR Metally,1974, (6), p 63–67 (Russ. Metall. Metall. 1974, (6), p 52–55)

  71. J.W. Shaner, G.R. Gathers, and C. Minichino, A New Apparatus for Thermophysical Measurements Above 2500 K, High Temp. High Press., 1976, 8, p 425-429

    Google Scholar 

  72. A. Cezairliyan and A.P. Miiller, A Transient (Subsecond) Technique for Measuring Heat of Fusion of Metals, Int. J. Thermophys., 1980, 1, p 195-216

    Article  ADS  Google Scholar 

  73. A. Cezairliyan and J.L. McClure, A Microsecond-Resolution Transient Technique for Measuring the Heat of Fusion of Metals: Niobium, Int. J. Thermophys., 1987, 8, p 577-592

    Article  ADS  Google Scholar 

  74. R. Gallob, H. Jäger, and G. Pottlacher, Recent Results on Thermophysical Data of Liquid Niobium and Tantalum, High Temp. High Press., 1985, 17, p 207-213

    Google Scholar 

  75. A. Kraminda, Y. Ralchenko, J.Reader and the NIST ASD Team, 2015, NIST Atomic Spectra Database (ver. 5.3). http://physics.nist.gov/asd

  76. I.K. Öztürk, G. Başar, A. Er, F. Güzelçimen, G. Başar, and S. Kröger, New Energy Levels of Atomic Niobium by Laser Induced Fluorescence Spectroscopy in the Near Infrared, J. Phys. B: At. Mol. Opt. Phys., 2015, 48, p 015005-1-015005-7

    Article  ADS  Google Scholar 

  77. H.G. Kolsky, R.M. Gilmer, P.W. Gilles, The Thermodynamic Properties of 54 Elements Considered as Ideal Monatomic Gases. US Atomic Energy Commission Rept. LA 2110, 1957

  78. P.J. Mohr, D.B. Newell, and B.N. Taylor, CODATA Recommended Values of the Fundamental Physical Constants: 2014, Rev. Mod. Phys., 2016, 88, p 035009-1-035009-73

    Article  ADS  Google Scholar 

  79. P.J. Mohr, D.B. Newell, and B.N. Taylor, CODATA Recommended Values of the Fundamental Physical Constants: 2014, J. Phys. Chem. Ref. Data, 2016, 45, p 043102-1-043102-74

    Article  ADS  Google Scholar 

  80. M.D. Scheer and J. Fine, Surface Ionization of Niobium, J. Chem. Phys., 1965, 42, p 3645-3648

    Article  ADS  Google Scholar 

  81. S.A. Shchukarev, G.A. Semenov, K.E. Frantseva, A Thermodynamic Study of the Volatilisation of Lower Oxides of Niobium. Zh. Neorg. Khim., 1966, 11, p 233–237 (Russ. J. Inorg. Chem. 1966, 11, p 129–132)

  82. O.H. Krikorian, J.H. Carpenter, and R.S. Newbury, A Mass Spectrometric Study of the Enthalpy of Sublimation of Technetium, High Temp. Sci., 1969, 1, p 313-330

    Google Scholar 

  83. A.L. Reimann and C.K. Grant, Some High Temperature Properties of Niobium, Philos. Mag., 1936, 22, p 34-48

    Article  Google Scholar 

  84. R. Speiser, P. Blackburn, and H.L. Johnston, Vapor Pressure of Niobium, J. Electrochem. Soc., 1959, 106, p 52-53

    Article  Google Scholar 

  85. V.N. Vlasov, Diss., Department of Chemistry, Moscow University, 1960. Quoted by A.N. Nesmeyanov, Vapor Pressure of the Chemical Elements, Izd. Akad. Nauk SSSR, Moscow, 1961. English Translation ed. by R. Gary (Elsevier Publishing Co., Amsterdam, 1963)

  86. P.F. Woerner and G.F. Wakefield, High Temperature Thermobalance, Rev. Sci. Instrum., 1962, 33, p 1456-1457

    Article  ADS  Google Scholar 

  87. P.E. Blackburn, Vapor pressure, Investigation of Boride Compounds for Very High Temperature Applications, US Air Force Materials Laboratory Research and Technology Division, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio, Rept. RTD-TDR-63-4096, Part 1, eds. by L. Kaufman, E.V. Clougherty (1963), pp. 325–347

  88. R.K. Koch, W.E. Anable, R.A. Beall, Vapor pressures of liquid columbium (2740° to 3140°K) and liquid hafnium (2500° to 2810°K). US Bur. Mines Rept. Invest. 7125 (1968)

  89. E. Storms, B. Calkin, and A. Yencha, The Vaporization Behaviour of the Defective Carbides. Part I: The Nb–C System, High Temp. Sci., 1969, 1, p 430-455

    Google Scholar 

  90. S.K. Gupta and K.A. Gingerich, Knudsen Effusion Mass Spectrometric Determination of the Dissociation Energy of Diniobium, Nb2 (g), and the Heat of Sublimation of Solid Niobium, J. Chem. Phys., 1979, 70, p 5350-5353

    Article  ADS  Google Scholar 

  91. R.A. Aleev, Y.V. Balkovoi, and A.A. Manokhin, Pressure of Saturated Vapor of Refractory Metals, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 1985, 5, p 157

    Google Scholar 

  92. A. Brown, M.W. Zemansky, and H.A. Boorse, The Superconducting and Normal Heat Capacities of Niobium, Phys. Rev., 1953, 92, p 52-58

    Article  ADS  Google Scholar 

  93. A.T. Hirshfeld, H.A. Leupold, and H.A. Boorse, Superconducting and Normal Specific Heats of Niobium, Phys. Rev., 1962, 127, p 1501-1507

    Article  ADS  Google Scholar 

  94. G.C. Lowenthal, The Specific Heat of Metals Between 1200°K and 2400°K, Aust. J. Phys., 1963, 16, p 47-67

    Article  ADS  Google Scholar 

  95. C.Affortit, Mesure de la Chaleur Spécifique des Métaux Jusqu’à Leur Température de Fusion, in Centre d’Etudes Nucleares de Fontenay-aux-Roses, Commissariat à l’Énergie Atomique, Rapp. CEA-R3287 (1967)

  96. C. Affortit and R. Lallement, Appareil de Mesure de la Chaleur Spécifique des Métaux Jusqu’à Leur Température de Fusion, Rev. Int. Hautes Tempér. Et Refract., 1968, 5, p 19-26

    Google Scholar 

  97. Y.A. Kraftmakher, Vacancy formation in niobium. Fiz. Tverd. Tela, 5, 950–951 (1963) (Sov. Phys. Solid State, 1963, 5, 696–697)

  98. Y.A. Kraftmakher, Modulation Method for Measuring Specific Heat, High Temp. High Press., 1973, 5, p 433-454

    Google Scholar 

  99. I.N. Makarenko, L.N. Trukhanova, L.P. Filippov, The Thermal Properties of Niobium at High Temperature, Teplofiz. Vys. Temp. 8, 667–670 (1970) (High Temp. 1970, 8, 628–631)

  100. L.P. Filippow, Untersuchung der Thermischen Eigenschaften im Stoff an der Moskauer Universität, Int. J. Heat Mass Transf., 1973, 16, p 865-885

    Article  Google Scholar 

  101. A. Cezairliyan, High Speed (Subsecond) Measurement of Heat Capacity, Electrical Resistivity and Thermal Radiation Properties of Niobium in the Range 1500 to 2700 K, J. Res. Nat. Bur. Stand., 1971, 75A, p 565-571

    Article  Google Scholar 

  102. F. Righini, R.B. Roberts, and A. Rosso, Measurement of Thermophysical Properties by a Pulse-Heating Method: Niobium in the Range 1000–2500 K, Int. J. Thermophys., 1985, 6, p 681-693

    Article  ADS  Google Scholar 

  103. V.E. Peletskii, A.P. Grishchuk, E.B. Zaretskii, A.A. Zolotukhin, Study of a Set of Thermophysical Properties of Niobium in the High Temperature Region. Teplofiz. Vys. Temp., 1987, 25, p 285–291 (High Temp. 1987, 25, p 205–211)

  104. F.M. Jaeger and W.A. Veenstra, The Exact Measurement of the Specific Heats of Solid Substances at High Temperatures, Rec. Trav. Chim., 1934, 53, p 677-687

    Article  Google Scholar 

  105. I.B. Fieldhouse, J.C. Hedge, J.I. Lang, Measurements of Thermal Properties, in Armour Research Foundation, Wright Air Development Center, Air Research and Development Command, United States Air Force, Wright-Patterson Air Force Base, Ohio, Rept. WADC-TR-58-274 (1958)

  106. P.V. Gel’d, F.G. Kusenko, Heat Content and the Specific Heats of Oxides and Carbides of Niobium at High Temperatures. Izv. Akad. Nauk SSSR Otd. Tekhn. Nauk Met i Toplivo, 1960, (2), p 79–86

  107. D.T. Hawkins and R.L. Orr, High-Temperature Heat Content of Niobium, J. Chem. Eng. Data, 1964, 9, p 505-507

    Article  Google Scholar 

  108. I.G. Kozhevnikov, Enthalpy and Heat Capacity of Niobium. Teplofiz. Vys. Temp., 1973, 12, p 896–897 (High Temp. 1973, 12, p 785–786)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Arblaster.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arblaster, J.W. The Thermodynamic Properties of Niobium. J. Phase Equilib. Diffus. 38, 707–722 (2017). https://doi.org/10.1007/s11669-017-0557-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-017-0557-4

Keywords

Navigation