Skip to main content
Log in

Thermodynamic Properties of Gold

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The thermodynamic properties of gold have been evaluated to 3200 K. Selected values include an enthalpy of sublimation of 368.4 ± 1.1 kJ·mol−1 for the monatomic gas at 298.15 K, a dissociation enthalpy D0 of 221.5 ± 0.8 kJ·mol−1 for the diatomic gas species at absolute zero and a derived equilibrium boiling point of 3131 K at one atmosphere pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. H. Preston-Thomas, The International Temperature Scale of 1990 (ITS-90), Metrologia, 1990, 27, p 3-10

    Article  ADS  Google Scholar 

  2. J. Fischer, M. de Podesta, K.D. Hill, M. Moldover, L. Pitre, R. Rusby, P. Steur, O. Tamura, R. White, and L. Wolber, Present Estimates of the Differences Between Thermodynamic Temperatures and the ITS-90, Int. J. Thermophys., 2011, 32, p 12-25

    Article  ADS  Google Scholar 

  3. Commission on Isotopic Abundances and Atomic Weights (CIAAW), Atomic Weights of the Elements 2015, ciaaw.org/atomic-weights.htm, Aug. 2015

  4. T.B. Douglas, Conversion of Existing Calorimetrically Determined Thermodynamic Properties to the Basis of the International Practical Temperature Scale of 1968, J. Res. Natl. Bur. Stand., 1969, 73A, p 451-470

    Article  Google Scholar 

  5. R.L. Rusby, The Conversion of Thermal Reference Values to the ITS-90, J. Chem. Thermodyn., 1991, 23, p 1153-1161

    Article  Google Scholar 

  6. R.L. Rusby, R.P. Hudson, and M. Durieux, Revised Values for (t90–t68) from 630°C to 1064°C, Metrologia, 1994, 31, p 149-153

    Article  ADS  Google Scholar 

  7. R.D. Weir and R.N. Goldberg, On the Conversion of Thermodynamic Properties to the Basis of the International Temperature Scale of 1990, J. Chem. Thermodyn., 1996, 28, p 261-276

    Article  Google Scholar 

  8. G.T. Furukawa, W.G. Saba and M.L. Reilly, Critical Analysis of the Heat-Capacity Data of the Literature and Evaluation of Thermodynamic Properties of Copper, Silver and Gold from 0 to 300 K, Nat. Stand. Ref. Data Ser.—Nat. Bur. Stand., NSRDS-NBS 18, 1968

  9. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelley, and D.D. Wagman, Selected Values of the Thermodynamic Properties of the Elements, American Society for Metals, Metals Park, 1973

    Google Scholar 

  10. F.G. Brickwedde, H. Dijk, M. Durieux, J.R. Clement, and J.K. Logan, The 1958 He4 Scale of Temperatures, J. Res. Nat. Bur. Stand. A, 1960, 64, p 1-17

    Article  Google Scholar 

  11. D.L. Martin, Specific Heats Below 3°K of Pure Copper, Silver and Gold, and of Extremely Dilute Gold-Transition-Metal Alloys, Phys. Rev., 1968, 170, p 650-655

    Article  ADS  Google Scholar 

  12. D.L. Martin, Specific Heats of Copper, Silver and Gold Below 30 K, Phys. Rev. B, 1973, 8, p 5357-5360

    Article  ADS  Google Scholar 

  13. B.M. Boerstoel, J.J. Zwart, and J. Hansen, The Specific Heat of Palladium, Platinum, Gold and Copper Below 30 K, Physica, 1971, 54, p 442-458

    Article  ADS  Google Scholar 

  14. G.A. Alers, Use of Sound Velocity Measurements in Determining the Debye Temperature of Solids, Physical Acoustics—Principles and Methods, Vol III, Part B: Lattice Dynamics , W.P. Mason, Ed., Academic Press, New York, 1965, p 1-42

    Google Scholar 

  15. G.A. Alers, Priv. Commun. to Martin[11]

  16. F.J. Du Chatenier and J. De Nobel, Heat Capacities of Some Dilute Alloys, Physica, 1962, 28, p 181-183

    Article  ADS  Google Scholar 

  17. F.J. Du Chatenier and J. De Nobel, Heat Capacities of Pure Copper and Silver and of Dilute Alloys of Cu, Ag, Zn., Mg and Al with Transition Metals of the First Row at Low Temperatures, Physica, 1966, 32, p 1097-1109

    Article  ADS  Google Scholar 

  18. J.E. Zimmerman and L.T. Crane, Anomalous Lattice Specific Heat of Gold and Zinc at Liquid Helium Temperatures, Phys. Rev., 1962, 126, p 513-516

    Article  ADS  Google Scholar 

  19. D.L. Martin, Anomalous Low Temperature Specific of Gold, Phys. Rev. Lett., 1964, 12, p 723-724

    Article  ADS  Google Scholar 

  20. D.L. Martin, Specific Heats of Copper, Silver and Gold Below 30°K, Phys. Rev., 1966, 141, p 576-582

    Article  ADS  Google Scholar 

  21. L.L. Isaacs, Low Temperature Specific Heat of Gold, Silver and Copper, J. Chem. Phys., 1965, 43, p 307-308

    Article  ADS  Google Scholar 

  22. T.A. Will and B.A. Green, Specific Heats of Au and AuSn at Low Temperatures, Phys. Rev., 1966, 150, p 519-522

    Article  ADS  Google Scholar 

  23. L.L. Isaacs, Priv. Commun. 1967 to Furukawa et al[8]

  24. D.L. Martin, The Specific Heats of Copper, Silver and Gold Below 300 K, Can. J. Phys., 1987, 65, p 1104-1110

    Article  ADS  Google Scholar 

  25. D.L. Martin, “Tray” Type Calorimeter for the 15-300 K Temperature Range: Copper as a Specific Heat Standard in This Range, Rev. Sci. Instrum., 1987, 58, p 639-646

    Article  ADS  Google Scholar 

  26. P. Nordmeyer and A.L. Bernoulli, Bestimmung der Spezifische Wärme einiger JEXemente Legierungen und Verbidungen Ztaischen—185 and +20, Verh. D. Phys. Ges., 1907, 5, p 175-183

    Google Scholar 

  27. T.W. Richards and F.G. Jackson, The Specific Heat of the Elements at Low Temperatures, Z. Phys. Chem., 1910, 70, p 414-451

    Google Scholar 

  28. T.H. Geballe and W.F. Giauque, The Heat Capacity and Entropy of Gold from 15 to 300°K, J. Am. Chem. Soc., 1952, 74, p 2368-2369

    Article  Google Scholar 

  29. P. Franzosini and K. Clusius, Ergebnisse der Tieftemperaturforschung. XLI. Atomwärme und Entropie des Goldes Zwischen 12 K and 273 K, Z. Naturforsch., 1963, 18, p 1243-1246

    ADS  Google Scholar 

  30. E.M.Plaza, Thermodynamics of Solid and Liquid AuSn and Heat Contents of Gold and Tin, U.S. Atomic Energy Commission, Report UCRL-17401, 1967

  31. F.M. Jaeger, E. Rosenbohm, and J.A. Bottema, The Exact Measurement of the Specific Heats of Solid Substances at High Temperatures. VII—Metals in Stabilized and Non-stabilized Condition: Copper and Gold, Proc. R. Soc. Sci. Amsterdam, 1932, 35, p 772-779

    Google Scholar 

  32. A. Ferrier (Participant No.3), Thermophysical Properties of Solid MaterialsCooperative Measurements on Heat Transport Phenomena of Solid Materials at High Temperatures, E. Fitzer (Ed.), AGARD Report No. 606, 1973, p. 57

  33. Y. Takahashi and H. Akiyama, Heat Capacity of Gold from 80 to 1000 K, Thermochim. Acta, 1986, 109, p 105-109

    Article  Google Scholar 

  34. D. Skelskey and J. Van Den Sype, High Temperature Specific Heat of Gold Using the Modulation Method, J. Appl. Phys., 1970, 41, p 4750-4751

    Article  ADS  Google Scholar 

  35. S. Stølen and F. Grønvold, Critical Assessment of the Enthalpy of Fusion of Metals Used as Enthalpy Standards at Moderate to High Temperatures, Thermochim. Acta, 1999, 327, p 1-32

    Article  Google Scholar 

  36. W.C. Roberts-Austen, On Certain Properties of Metals Considered in Relation to the Periodic Law, Proc. R. Soc. Lond., 1890, 49, p 347-356

    Article  Google Scholar 

  37. W.C. Roberts-Austen, Sur Quelques Propriétés des Métaux dans Leurs Rapports avec la Loi Periodique, Ann. Chim. Phys., 1892, 26, p 84-97

    Google Scholar 

  38. P. Ludwik, Kohäsion und Atomvolumen, Z. Phys. Chem., 1914, 88, p 632-637

    Google Scholar 

  39. F. Wüst, A. Meuthen, and R. Durrer, Die Temperatur-Wärmeinhaltskurven der Technischwichtigen Metalle, Forsch. Gebiete Ingenieurw., 1918, 204, p 1-63

    Google Scholar 

  40. S. Umino, On the Latent Heat of Fusion of Several Metals and Their Specific Heats at High Temperatures, Sci. Rep. Tôhuku Univ., 1926, 15, p 597-617

    Google Scholar 

  41. O. Vollmer and R. Kohlhaas, Die Atom- und Schmelzwärme von Kupfer, Silber und Gold, Z. Metallkde, 1968, 59, p 273-277

    Google Scholar 

  42. N.A. Nedumov, Metals and Alloys, Differential Thermal Analysis, R.C. Mackenzie, Ed., Academic Press, New York, London, 1970, p 161-191

    Google Scholar 

  43. S.V. Lebedev, A.I. Savvatimskii and Yu.B.Smirnov, Exploding-Wire Measurement of Heat of Fusion and Electrical Conductivity of Refractory Metals, Zh. Tekhn. Fiz., 1972, 42, 1752–1760 (Sov. Phys. Tech. Phys. 1973, 17, 1400–1406)

  44. E. Kaschnitz, G. Nussbaumer, G. Pottlacher, and H. Jager, Microsecond-Resolution Measurements of the Thermophysical Properties of Liquid Gold, Int. J. Thermophys., 1993, 14, p 251-257

    Article  ADS  Google Scholar 

  45. K.K. Kelley, Contributions to the Data on Theoretical Metallurgy. V. Heats of Fusion of Inorganic Substances, U.S. Bur. Mines Bull. 393, 1936

  46. M.W. Nathan and M. Leider, Studies of Bismuth Alloys. I. Liquidus Curves of the Bismuth-Copper, Bismuth-Silver and Bismuth-Gold Systems, J. Phys. Chem., 1962, 66, p 2012-2015

    Article  Google Scholar 

  47. G. Wilde, C. Mitsch, G.P. Görler, and R. Willnecker, Specific Heat and Related Thermodynamic Functions of Undercooled Cu-Ni and Au Melts, J. Non-Cryst. Solids, 1996, 205–207, p 425-429

    Article  Google Scholar 

  48. J.W. Tester, R.C. Feber, and C.C. Herrick, Calorimetric Study of Liquid Gold, J. Chem. Eng. Data, 1968, 13, p 419-421

    Article  Google Scholar 

  49. C.E. Moore, Atomic Energy Levels, National Bureau of Standards, National Standards Reference Data Series, Report NBS-NSRDS 35, Vol. III, 1971

  50. J.C. Ehrhardt and S.P. Davis, Precision Wavelengths and Energy Levels in Gold, J. Opt. Soc. Am., 1971, 61, p 1342-1349

    Article  ADS  Google Scholar 

  51. C.M. Brown and M.L. Ginter, Absorption Spectra of Au I, Between 1300 and 1900 Å, J. Opt. Soc. Am., 1978, 68, p 243-246

    Article  ADS  Google Scholar 

  52. S. George, A. Grays, and R. Engleman, Jr., Spectrum of Au I, in the Infra Red using a Fourier Transform-Spectrometer, J. Opt. Soc. Am. B, 1988, 5, p 1500-1502

    Article  ADS  Google Scholar 

  53. H.G.Kolsky, R.M.Gilmer and P.W.Gilles, The Thermodynamic Properties of 54 Elements Considered as Ideal Monatomic Gases, U.S. Atomic Energy Commission, Report LA 2110, 1957

  54. P.J. Mohr, B.N. Taylor, and D.B. Newell, CODATA Recommendations of the Fundamental Physical Constants: 2010, Rev. Mod. Phys., 2012, 84, p 1527-1605

    Article  ADS  Google Scholar 

  55. P.J. Mohr, B.N. Taylor, and D.B. Newell, CODATA Recommendations of the Fundamental Physical Constants 10, J. Phys. Chem. Ref. Data, 2012, 41, p 043109-1-043109-84

    Article  ADS  Google Scholar 

  56. M.H.Rand, Priv. Commun. 2009

  57. M.D. Morse, Clusters of Transition-Metal Atoms, Chem. Rev., 1986, 86, p 1049-1109

    Article  Google Scholar 

  58. K.K. Das and K. Balasubramanian, Spectroscopic Properties of Low-Lying Electronic States in Au2, J. Mol. Spectrosc., 1990, 140, p 280-294

    Article  ADS  Google Scholar 

  59. G.A. Bishea and M.D. Morse, Spectroscopic Studies of Jet-Cooled AgAu and Au2, J. Chem. Phys., 1991, 95, p 5646-5659

    Article  ADS  Google Scholar 

  60. A.M. James, P. Kowalczyk, B. Simard, J.C. Pinegar, and M.D. Morse, The A’1u ← X 0  +g System of Gold Dimer, J. Mol. Spectrosc., 1994, 168, p 248-257

    Article  ADS  Google Scholar 

  61. R.C. Paule and J. Mandel, Analysis of Interlaboratory Measurements on the Vapor Pressure of Gold (Certification of Standard Reference Material 745), Natl. Bur. Stand., Special Publ. 260–19, 1970

  62. R.C. Paule and J. Mandel, Analysis of Interlaboratory Measurements on the Vapor Pressure of Gold, Pure Appl. Chem., 1972, 31, p 371-394

    Google Scholar 

  63. D.F. Avery, J. Cuthbert, N.J.D. Prosser, and C. Silk, High Temperature Vaporization Studies by Mass Spectrometry. I. The Coinage Metals—A Discussion of the Method and Errors, J. Sci. Instrum., 1966, 43, p 436-442

    Article  ADS  Google Scholar 

  64. R.A.Kent and J.Leary, Mass Spectrometric Studies of Plutonium Compounds at High Temperatures: I. The Heats of Vaporization of Gold and Plutonium and the Heat of Decomposition of Plutonium Mononitride, U.S. Atomic Energy Agency, Report LA-3902, 1968

  65. D.A. Katskov, B.V. L’vov, L.K. Polzik and Yu.V.Semenov, Investigation of the Process of the Formation of an Absorbing Layer of Atoms in Graphite Furnaces in Atomic Absorption Analysis, Zh. Prikl. Spektrosk., 1977, 26, 598-605 (J. Appl. Spectrosc. 1977, 26, 430–436)

  66. O. Ruff and B. Bergdahl, Arbeiten im Gebiet Hoher Temperaturen—XII—Die Messung von Dampfspannungen bei sehr Hohen Temperaturen nebst Einigen Beobachtungen über die Löslichkeit von Kohlenstoff in Metallen, Z. Anorg. Allgem. Chem., 1919, 106, p 76-94

    Article  Google Scholar 

  67. O. Ruff and M. Konschak, Dampdruckmessung am Cu, Au, Al2O3, SiO2, Si and SiC. Des Lezteren Bildung und Zersetzung, Z. Elektrochem., 1926, 32, p 515-525

    Google Scholar 

  68. P. Harteck, Dampfdruckmessungen von Ag, Au, Cu, Pb, Ga, Sn und Berechnung der Chemischen Konstanten, Z. Phys. Chem., 1928, 134, p 1-20

    Google Scholar 

  69. A. Farkas, Über die Bildung von Gasformigem Goldhydrid, Z. Phys. Chem., 1929, B5, p 467-475

    Google Scholar 

  70. E. Baur and R. Brunner, Dampfdruckmessungen an Hochsiedenden Metallen, Helv. Chim. Acta, 1934, 17, p 958-969

    Article  Google Scholar 

  71. L.D. Hall, The Vapor Pressure of Gold and the Activities of Gold in Gold-Copper Solid Solutions, J. Am. Chem. Soc., 1951, 73, p 757-760

    Article  Google Scholar 

  72. An.N Nesmeyanov, L.A. Smakhtin, D.Ya. Choporov, and V.I. Lebedev, Investigation into the Thermodynamics of Solid Solutions of Gold, Silver and Copper. I, Zh. Fiz. Khim., 1959, 33, p 342-348

    Google Scholar 

  73. An.N. Nesmeyanov, L.A. Smakhtin and V.I. Lebedev, Measurement of the Vapor Pressures of the Solid Solutions Au-Ag and Ag-Cu, Dokl.Akad.Nauk SSSR, 1957, 112, 700–702 (Proc. Acad. Sci. USSRPhys. Chem. Section, 1957, 112, 101–104)

  74. P. Grieveson, G.W. Hooper, and C.B. Alcock, The Vapor Pressure of the Liquid Metals Copper, Silver and Gold—Part 1, The Physical Chemistry of Process Metallurgy, G.R. Pierre, Ed., Interscience, New York, 1961, p 341-352

    Google Scholar 

  75. J.E. Bennett, The MIKER Technique, Ph.D. Thesis, Oklahoma State University, Stillwater, Oklahoma, 1965

  76. R.D. Freeman, Molecular Flow and the Effusion Process in the Measurement of Vapor Pressures, Air Force Materials Laboratory, Research and Technology Division, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio, Tech. Doc. Rep. ASD TDR-754, Part II. Additional Data and Details of Equipment, 1965

  77. R.L. Faircloth, B.A. Phillips, F.C.W. Pummery and M.H. Rand, Unpublished Work, 1967. Quoted by Phillips and Rand[86]

  78. J. Kordis, K.A. Gingerich, and R.J. Seyse, Atomization Energies and Heats of Formation of Gaseous Au2, Tb2, TbAu, HoAu, TbAu2 and HoAu2, J. Chem. Phys., 1974, 61, p 5114-5121

    Article  ADS  Google Scholar 

  79. B.M. Novoselov, E.L. Dubinin, and A.I. Timofeev, Measurements of Vapor Pressure of Pure Metals at High Temperatures using the Effusion-Torsion Method, Izv. Vyssh. Ucheb. Zaved. Tsvetn. Metall., 1978, 6, p 41-47

    Google Scholar 

  80. S.E. Vaisburd, I.Sh. Tsemekhman, A.V. Taberko and Ya.A. Karasev, Vapor Pressure Over Molten Metals : Iron, Cobalt, Nickel, Palladium, Copper, Silver, Gold, Tin and Lead, Protessy Tsvetn. Metall. Nizk. Davleniiakh, A.I. Manokhin, G.N. Zviadadze and V.G. Finikov (Ed.), Izd. Nauka, Moscow, 1983, p 120–128

  81. V.K. Panday and A.K. Ganguly, Measurement of Monatomic Vapor Concentrations of Some Elements by Atomic Absorption Spectrometry: Cu, Ag, Au, Mn and Al, Appl. Spectrosc., 1985, 39, p 526-531

    Article  ADS  Google Scholar 

  82. F. Geiger, C.A.Busse and R.L.Loehrke, The Vapor Pressure of Indium, Silver, Gallium, Copper, Tin and Gold between 0.1 and 3.0 Bar, Int. J. Thermophys., 1987, 8, 425-436

  83. J.P. Nabot and C. Chatillon, Mass Spectrometric Determination of the Atomization Energies of the Au2, AuIn, Au2In, AuIn2, Pb2 and AuPb Gas Molecules, Z. Metallkde, 1990, 81, p 100-104

    Google Scholar 

  84. E.H.Copland, Long Term Measurement of the Vapor Pressure of Gold in the Au-C System, NASA Rept. NASA/CR-2009-215498, 2009

  85. D.L. Hildenbrand and W.F. Hall, The Vapor Pressure and Heat of Sublimation of Gold, J. Phys. Chem., 1962, 66, p 754-755

    Article  Google Scholar 

  86. B.A.Phillips and M.H.Rand, A Transpiration Apparatus for Measuring Vapour Pressure; The Vapour Pressure of Gold, U.K. Atomic Energy Agency, Research Group, Rep. AERE R5352, 1967

  87. J.W. Ward, Study of Some of the Parameters Affecting Knudsen Effusion. III. The Vapor Pressure of Gold, J. Chem. Phys., 1967, 47, p 4030-4034

    Article  ADS  Google Scholar 

  88. G.I. Haury, The Vapor Pressure of Standard Samples of Gold and Silver, Air Force Materials Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio, Tech. Rep. AFML-TR-68-368, 1969

  89. P.C. Marx, E.T. Chang, and N.A. Gocken, Vapor Pressure of Liquid Gold and Silver, High Temp. Sci., 1970, 2, p 140-145

    Google Scholar 

  90. S.R. Bharadwaj, A.S.Kerkar, S.N.Tripathi and R.Kameswaren, Vaporization Study of Pure Palladium, J. Chem. Thermodyn. 1990, 22, 453–461

  91. K. Franzreb, A. Wucher, and H. Oechsner, Absolute Cross Sections for Electron Impact Ionization of Ag2, Z. Phys. D, 1991, 19, p 77-79

    Article  ADS  Google Scholar 

  92. J. Drowart and P. Goldfinger, Investigation of Inorganic Systems at High Temperature by Mass Spectrometry, Angew. Chem. Int. Ed., 1967, 6, p 581-596

    Article  Google Scholar 

  93. J. Drowart and R.E. Honig, Mass Spectrometric Study of Copper, Silver and Gold, J. Chem. Phys., 1956, 25, p 581-582

    Article  ADS  Google Scholar 

  94. J. Drowart and R.E. Honig, A Mass Spectrometric Method for the Determination of Dissociation Energies of Diatomic Molecules, J. Phys. Chem., 1957, 61, p 980-985

    Article  Google Scholar 

  95. G.A. Bishea and M.D. Morse, The a 3Σ +1 (u)  ← X 1Σ +(g) Band Systems of CuAu and Au2, Chem. Phys. Lett., 1990, 171, p 430-432

    Article  ADS  Google Scholar 

  96. P. Schissel, Dissociation Energies of Cu2, Ag2 and Au2, J. Chem. Phys., 1957, 26, p 1276-1280

    Article  ADS  Google Scholar 

  97. M. Ackerman, F.E. Stafford, and J. Drowart, Mass Spectrometric Determination of the Dissociation Energies of the Molecules AgAu, AgCu and AuCu, J. Chem. Phys., 1960, 33, p 1784-1789

    Article  ADS  Google Scholar 

  98. K. Hilpert and K.A. Gingerich, Atomization Enthalpies of the Molecules Cu3, Ag3 and Au3, Ber. Bunsengen. Phys. Chem., 1980, 84, p 739-745

    Article  Google Scholar 

  99. K. Clusius and P. Harteck, Über die Spezifischen Wärmen einiger Fester Körper bei Tiefen Temperaturen, Z. Phys. Chem., 1928, 134, p 243-263

    Google Scholar 

  100. C.P.Butler and E.C.Y.Inn, A Radiometric Method for Determining Specific Heat at Elevated Temperatures, U.S. Naval Radiological Defence Lab., Tech. Rep. USNRDL-TR-235, 1958

  101. P. Franzosini, Building of an Apparatus for Molar Heat Measurements of Solids: The Atomic Heat of Gold between 70 and 273°K, Ric. Sci. Rend. A, 1963, 3, p 365-374

    Google Scholar 

  102. Ya.A. Kraftmakher and P.G. Strelkov, Energy of Formation and Concentration of Vacancies in Gold, Fiz. Tverd. Tela, 1966, 8, 580-582 (Sov. Phys.Solid State, 1966, 8, 460-462)

  103. M.J. O’Neill, Measurement of Specific Heat Functions by Differential Scanning Calorimetry, Anal. Chem., 1966, 38, p 1331-1336

    Article  Google Scholar 

  104. D.T. Hawkins and R. Hultgren, The Effect of Ordering on Lattice Heat Capacities Ordered and Disordered AuCu, J. Chem. Thermodyn., 1971, 3, p 175-186

    Article  Google Scholar 

  105. G. Cordoba and C.R. Brooks, The Heat Capacity of Gold from 300 to 1200°K: Experimental Data and Analysis of Contributions, Phys. Stat. Sol. (a), 1971, 6, p 581-595

    Article  ADS  Google Scholar 

  106. Q. Jiang, R. Lück, and B. Predel, Eine Verfeinerte Methode zur Messung der Spezifischen Wärme mit dem Differential-Scanning-Kalorimeter, Z. Metallkde, 1990, 81, p 94-99

    Google Scholar 

  107. H. Schimpff, Über die Wärmekapazität von Metallen und Metallverbindungen, Z. Phys. Chem., 1910, 71, p 257-300

    Google Scholar 

  108. P. Schläpfer and P. Debrunner, Zur Kenntnis der Spezifischen Wärme des Graphitischen Kohlenstoffs und der Kokses, Helv. Chim. Acta, 1924, 7, p 31-58

    Article  Google Scholar 

  109. F.M. Jaeger, E. Rosenbohm and J.A. Bottema, La Détermination Exacte des Chaleurs Spécifiques à des Températures Élevées. Etude Systématique des Causes d’Erreurs Expérimentales se Présentant dans l’Emploi du Calorimetre Métallique et dans la Mesure des Chaleurs Spécifiques des Métaux Préalablement Travaillés, Rec. Trav. Chim. Pay Bas, 1933, 52, 61-84

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Arblaster.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arblaster, J.W. Thermodynamic Properties of Gold. J. Phase Equilib. Diffus. 37, 229–245 (2016). https://doi.org/10.1007/s11669-016-0449-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-016-0449-z

Keywords

Navigation