Skip to main content
Log in

Thermodynamic Properties of Copper

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The thermodynamic properties of copper have been evaluated to 2900 K. Selected values include an enthalpy of sublimation of 337.2 ± 1.7 kJ/mol for the monatomic gas at 298.15 K, a dissociation enthalpy D 0 of 192.0 ± 2.0 kJ/mol for the diatomic gas species at absolute zero and a derived equilibrium boiling point of 2843 K at one atmosphere pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. H. Preston-Thomas, The International Temperature Scale of 1990 (ITS-90), Metrologia, 1990, 27, p 3–10 and 107

    Article  ADS  Google Scholar 

  2. J. Fischer, M. de Podesta, K.D. Hill, M. Moldover, L. Pitre, R. Rusby, P. Steur, O. Tamura, R. White, and L. Wolber, Present Estimates of the Differences Between Thermodynamic Temperatures and the ITS-90, Int. J. Thermophys., 2011, 32, p 12-25

    Article  ADS  Google Scholar 

  3. M.E. Wieser, N. Holden, T.B. Coplen, J.K. Böhike, M. Berglund, W.A. Brand, P. De Bièvre, M. Gröning, R.D. Loss, J. Meija, T. Hirata, T. Prohaska, R. Schoenberg, G. O’Connor, T. Walczyk, S. Yoneda, and X.-K. Zhu, Atomic Weights of the Elements 2011, Pure Appl. Chem., 2013, 85, p 1047-1078

    Article  Google Scholar 

  4. T.B. Douglas, Conversion of Existing Calorimetrically Determined Thermodynamic Properties to the Basis of the International Practical Temperature Scale of 1968, J. Res. Natl. Bur. Stand., 1969, 73A, p 451-470

    Article  Google Scholar 

  5. R.L. Rusby, The Conversion of Thermal Reference Values to the ITS-90, J. Chem. Thermodyn., 1991, 23, p 1153-1161

    Article  Google Scholar 

  6. R.L. Rusby, R.P. Hudson, and M. Durieux, Revised Values for (t90–t68) from 630°C to 1064°C, Metrologia, 1994, 31, p 149-153

    Article  ADS  Google Scholar 

  7. R.D. Weir and R.N. Goldberg, On the Conversion of Thermodynamic Properties to the Basis of the International Temperature Scale of 1990, J. Chem. Thermodyn., 1996, 28, p 261-276

    Article  Google Scholar 

  8. G.T. Furukawa, W.G. Saba, and M.L. Reilly, Critical Analysis of the Heat-Capacity Data of the Literature and Evaluation of Thermodynamic Properties of Copper, Silver and Gold from 0 to 300 K, Natl. Stand. Ref. Data Ser. Natl. Bur. Stand. NSRDS-NBS 18, 1968

  9. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelley, and D.D. Wagman, Selected Values of the Thermodynamic Properties of the Elements, American Society for Metals, Metals Park, 1973

    Google Scholar 

  10. G.K. White and S.J. Collocott, Heat Capacity of Reference Materials: Cu and W, J. Phys. Chem. Ref. Data, 1984, 13, p 1251-1257

    Article  ADS  Google Scholar 

  11. A.J. Head and R. Sabbah, Recommended Reference Materials for the Realization of Physiochemical Properties, K.N. Marsh, Ed., Blackwell Scientific, Oxford, 1987, p 219-319

    Google Scholar 

  12. J.D. Cox, D.D. Wagman, and V.A. Medvedev, CODATA Key Values for Thermodynamics, Hemisphere, New York, 1989

    Google Scholar 

  13. G.K. White and M.L. Minges, Thermophysical Properties of Some Key Solids: An Update, Int. J. Thermophys., 1997, 18, p 1269-1327

    Article  ADS  Google Scholar 

  14. M.W. Chase Jr., NIST-JANAF Thermochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monogr. No. 9, 1998

  15. F.G. Brickwedde, H. van Dijk, M. Durieux, J.R. Clement, and J.K. Logan, The 1958 He4 Scale of Temperatures, J. Res. Natl. Bur. Stand, 1960, 64A, p 1-17

    Article  Google Scholar 

  16. N.E. Phillips, Low Temperature Heat Capacity of Metals, CRC Crit. Rev. Solid State Sci., 1972, 2, p 467-553

    Article  ADS  Google Scholar 

  17. G.A. Alers, Use of Sound Velocity Measurements in Determining the Debye Temperature of Solids, Physical Acoustics—Principles and Methods, Vol 3, Part B: Lattice Dynamics , W.P. Mason, Ed., Academic, New York, 1965, p 1-42

    Google Scholar 

  18. G.A. Alers, Priv. Commun. to Martin [44]

  19. R. Tsumura, M. Chavez, A. Ravex, and J.P. Faure, Specific Heat Measurements of Pure Copper Below One Kelvin, Rev. Mex. Fis., 1986, 32, p 197-209

    Google Scholar 

  20. W.S. Corak, M.P. Garfunkel, C.B. Satterthwaite, and A. Wexler, Atomic Heats of Copper, Silver and Gold From 1°K to 5°K, Phys. Rev., 1955, 98, p 1699-1707

    Article  ADS  Google Scholar 

  21. J.A. Rayne, The Heat Capacity of Cooper Below 4.2°K, Aust. J. Phys., 1956, 9, p 189-197

    Article  ADS  Google Scholar 

  22. F.D. Manchester, A Cryostat for Measuring Specific Heats Between 1 and 4.2°K, Can. J. Phys., 1959, 37, p 989-1001

    Article  ADS  Google Scholar 

  23. J.P. Franck, F.D. Manchester, and D.L. Martin, The Specific Heat of Pure Copper and of Some Copper + Iron Alloys Showing a Minimum in the Electrical Resistance at Low Temperatures, Proc. R. Soc. Lond. A, 1961, 263, p 494-507

    Article  ADS  Google Scholar 

  24. F.J. Du Chatenier and J. De Nobel, Heat Capacities of Some Dilute Alloys, Physica, 1962, 28, p 181-183

    Article  ADS  Google Scholar 

  25. F.J. Du Chatenier and J. De Nobel, Heat Capacities of Pure Copper and Silver and of Dilute Alloys of Cu, Ag, Zn, Mg and Al with Transition Metals of the First Row at Low Temperatures, Physica, 1966, 32, p 1097-1109

    Article  ADS  Google Scholar 

  26. B.W. Veal and J.A. Rayne, Heat Capacity of β-CuZn Below 4.2°K, Phys. Rev., 1962, 128, p 551-555

    Article  ADS  Google Scholar 

  27. H.R. O’Neal, The Low Temperature Heat Capacity of Tin and Indium, Thesis, University of California, Lawrence Radiation Laboratory, U.S. Atomic Energy Commission, Rep. UCRL-10426, 1963

  28. G.D. Kneip, J.O. Betterton, Jr., and J.O. Scarbrough, Low Temperature Specific Heats of Titanium, Zirconium and Hafnium, Phys. Rev., 1963, 130, p 1687-1692

    Article  ADS  Google Scholar 

  29. N.E. Phillips, Low Temperature Heat Capacities of Gallium, Cadmium and Copper, Phys. Rev., 1964, 134, p A385-A391

    Article  ADS  Google Scholar 

  30. G. Ahlers, Some Properties of Solid Hydrogen at Small Volumes, Thesis, University of California, Lawrence Radiation Laboratory, U.S. Atomic Energy Commission, Rep. UCRL-10757, 1963

  31. G. Ahlers, Lattice Heat Capacity of Solid Hydrogen, J. Chem. Phys., 1964, 41, p 86-94

    Article  ADS  Google Scholar 

  32. L.L. Isaacs, Low Temperature Specific Heat of Gold, Silver and Copper, J. Chem. Phys., 1965, 43, p 307-308

    Article  ADS  Google Scholar 

  33. L.L. Isaacs and T.B. Massalski, Low Temperature Specific Heats of Alloys Based on the Noble Metals, Cu, Ag, and Au, α-Phase Cu-Zn Alloys, Phys. Rev., 1965, 138, p A134-A138

    Article  ADS  Google Scholar 

  34. M. Dixon, F.E. Hoare, T.M. Holden, and D.E. Moody, The Low Temperature Specific Heats of Some Pure Metals (Cu, Ag, Pt, Al, Ni, Fe, Co), Proc. R. Soc. Lond. A, 1965, 285, p 561-580

    Article  ADS  Google Scholar 

  35. N.M. Senozan, Similarity Principle and Isotope Effect in Superconducting Indium. II. Low-Temperature Heat Capacity of Niobium, Thesis, University of California, Lawrence Radiation Laboratory, U.S. Atomic Energy Commission, Rep. UCRL-11901, 1965

  36. D.L. Martin, Specific Heats of Copper, Silver and Gold Below 30°K, Phys. Rev., 1966, 141, p 576-582

    Article  ADS  Google Scholar 

  37. L.C. Clune and B.A. Green, Jr., Low-Temperature Specific Heats of α-CuSn and α-CuZn Alloys, Phys. Rev., 1966, 144, p 525-528

    Article  ADS  Google Scholar 

  38. G. Ahlers, Heat Capacity of Copper, Rev. Sci. Instrum., 1966, 37, p 477-480

    Article  ADS  Google Scholar 

  39. G.A. Sargent, L.L. Isaacs, and T.B. Massalski, Low Temperature Specific Heats of α-Phase Copper-Silver Alloys, Phys. Rev., 1966, 143, p 420-422

    Article  ADS  Google Scholar 

  40. D.W. Osborne, H.E. Flotow, and F. Schreiner, Calibration and Use of Germanium Resistance Thermometers for Precise Heat Capacity Measurements From 1 to 25°K. High Purity Copper for Interlaboratory Heat Capacity Comparisons, Rev. Sci. Instrum., 1967, 78, p 159-168

    Article  ADS  Google Scholar 

  41. L.L. Isaacs, Priv. Commun. 1967 to Furukawa et al. [8]

  42. E. Gmelin and K.H. Gobrecht, Die Prazisionsmessung der Atomware von Reinstkupfer fur Kalorimetrie bei Tiefen Temperaruren, Z. Angew. Phys., 1967, 24, p 21-24

    Google Scholar 

  43. B.M. Boerstoel, W.J.J. Van Dissell, and M.B.M. Jacobs, A Cryostat for Heat Capacity Measurements Between 1°K and 30°K; Specific Heat of Copper, Physica, 1968, 38, p 287-299

    Article  ADS  Google Scholar 

  44. D.L. Martin, Specific Heats Below 3°K of Pure Copper, Silver and Gold, and of Extremely Dilute Gold-Transition-Metal Alloys, Phys. Rev., 1968, 170, p 650-655

    Article  ADS  Google Scholar 

  45. M. Dixon, F.E. Hoare, and T.M. Holden, The Low-Temperature Specific Heat of Some Nickel-Based Iron and Copper Alloys, Proc. R. Soc. Lond. A, 1968, 303, p 339-354

    Article  ADS  Google Scholar 

  46. T.C. Cetas, C.R. Tilford, and C.A. Swenson, Specific Heats of Cu, GaAs, GaSb, InAs, and InSb From 1 to 30°K, Phys. Rev., 1968, 174, p 835-844

    Article  ADS  Google Scholar 

  47. Y. Sato, J.M. Sivertsen, and L.E. Toth, Changes in Low-Temperature Specific Heats of Cu-Pd Alloys Resulting From Changes in Short-Range Order, Phys. Lett. A, 1968, 28, p 118-119

    Article  ADS  Google Scholar 

  48. Y. Sato, J.M. Sivertsen, and L.E. Toth, Low-Temperature Specific-Heat Study of Cu-Pd Alloys, Phys. Rev. B, 1970, 1, p 1402-1410

    Article  ADS  Google Scholar 

  49. D.L. Martin, Specific Heat of Pure Single-Crystal and Polycrystalline Copper Below 3°K, Can. J. Phys., 1969, 47, p 1253-1255

    Article  ADS  Google Scholar 

  50. N. Waterhouse, An Anomaly in the Specific Heat Below 3°K of Copper Containing Hydrogen, Can. J. Phys., 1969, 47, p 1485-1491

    Article  ADS  Google Scholar 

  51. D.W. Bloom, D.H. Lowndes, Jr., and L. Finegold, Low Temperature Specific Heat of Copper: Comparison of Two Samples of High Purity, Rev. Sci. Instrum., 1970, 41, p 690-695

    Article  ADS  Google Scholar 

  52. A.J. Leadbetter and K.E. Wycherley, A Calorimeter for the Range 1 to 30 K the Heat Capacity of Copper and Glycerol Glass, J. Chem. Thermodyn., 1970, 2, p 855-866

    Article  Google Scholar 

  53. L.C. Clune and B.A. Green, Jr., Rigid-Band Behaviour in the Specific Heats of PbTl and PbBi Alloys: Electron-Phonon Enhancement Effects, Phys. Rev. B, 1970, 1, p 1459-1467

    Article  ADS  Google Scholar 

  54. D.R. Zrudsky, W.G. Delinger, W.R. Savage, and J.W. Schweitzer, Specific Heats of α-Phase Cu-Al and Dilute Magnetic Cu-Al(Fe) Alloys, Phys. Rev. B., 1971, 3, p 3025-3032

    Article  ADS  Google Scholar 

  55. J.C. Holste, T.C. Cetas, and C.A. Swenson, Effects of Temperature Scale Differences on the Analysis of Heat Capacity Data: The Specific Heat of Copper From 1 to 30 K, Rev. Sci. Instrum., 1972, 43, p 670-676

    Article  ADS  Google Scholar 

  56. D.L. Martin, L.L.T. Bradley, W.J. Cazemier, and R.L. Snowden, Automatic Calorimetry in the 3-30 K Range. The Specific Heat of Copper, Rev. Sci. Instrum., 1973, 44, p 675-684

    Article  ADS  Google Scholar 

  57. V. Novotny and P.P.M. Meincke, Calorimetry of Small Samples with Low Thermal Diffusivity, Rev. Sci. Instrum., 1973, 44, p 817-820

    Article  ADS  Google Scholar 

  58. D.L. Martin, Specific Heats of Copper, Silver and Gold Below 30 K, Phys. Rev. B, 1973, 8, p 5357-5360

    Article  ADS  Google Scholar 

  59. M. Hurley and B.C. Gerstein, The Low-Temperature Heat Capacity of 1965 Calorimetry- Conference Copper: A Comparison With Previous Results, J. Chem. Thermodyn., 1965, 1974(6), p 787-793

    Google Scholar 

  60. V.V. Aleksandrov, A.N. Borzyak and I.I. Novikov, Specific Heat of Copper in the 2.3 to 330 K Temperature Range, V. Sb. Fiz.-Mekh. i Teplofiz. Svoistva Metallov., 1976, 22-31

  61. J.G. Park and A.W. Vaidya, Resistive SQUID Calorimetry at Low Temperatures, J. Low Temp. Phys., 1980, 40, p 247-274

    Article  ADS  Google Scholar 

  62. E. Gmelin and P. Rödhammer, Automatic Low Temperature Calorimetry for the Range 0.3–320 K, J. Phys. E: Sci. Instrum., 1981, 14, p 223-228

    Article  ADS  Google Scholar 

  63. S.J. Collocott, A Simple Microcomputer-Controlled Calorimeter: The Heat Capacity of Copper, Invar and RbNiCl3, Aust. J. Phys., 1983, 36, p 573-581

    Article  ADS  Google Scholar 

  64. D.W. Osborne, H.E. Flotow, and F. Schreiner, Precise Low Temperature Calorimetry with Germanium Resistance Thermometers, Ann. Acad. Sci. Fenn. Ser. A. VI, 1966, 210, p 35-39

    Google Scholar 

  65. S.E. Buravoi, E.A. Bogomazov, and V.A. Samoletov, Measurement of the Heat Capacities of Materials at Cryogenic Temperatures During Heating and Cooling, Izv. Vyssh. Uchebn. Zaved. Priborostr., 1988, 31(12), p 74-78

    Google Scholar 

  66. R.A. Robie, B.S. Hemingway, and W.H. Wilson, The Heat Capacities of Calorimetry Conference Copper and of Muscovite, Pyrophyllite and Illite between 15 and 375 K and Their Standard Entropies at 298.15 K, J. Res. U.S. Geol. Surv., 1976, 4, p 631-644

    Google Scholar 

  67. D.L. Martin, “Tray” Type Calorimeter for the 15-300 K Temperature Range: Copper as a Specific Heat Standard in This Range, Rev. Sci. Instrum., 1987, 58, p 639-646

    Article  ADS  Google Scholar 

  68. R. Stevens and J. Boerio-Goates, Heat Capacity of Copper on the ITS-90 Temperature Scale Using Adiabatic Calorimetry, J. Chem. Thermodyn., 2004, 36, p 857-863

    Article  Google Scholar 

  69. M.R. Bissengaliyeva, D.B. Gogol, S.T. Taymasova, and N.S. Bekturganov, Measurement of Heat Capacity by Adiabatic Calorimetry and Calculation of Thermodynamic Functions of Standard Substances: Copper, Benzoic Acid and Heptane (For Calibration of an Adiabatic Calorimeter), J. Chem. Eng. Data, 2011, 56, p 195-204

    Article  Google Scholar 

  70. H.L. Bronson, H.M. Chisholm, and S.M. Dockerty, On the Specific Heats of Tungsten, Molybdenum and Copper, Can. J. Res., 1933, 8, p 282-303

    Article  Google Scholar 

  71. D.G. Archer, Enthalpy Increment Measurements for NaCl (cr) and KBr (cr) from 4.5 K to 350 K. Thermodynamic Properties of the NaCl + H2O System, J. Chem. Eng. Data, 1997, 42, p 281-292

    Article  Google Scholar 

  72. P. Berge and G. Blanc, Calorimètre adiabatique, J. Phys. Radium, 1969, 21(7), p 129A-133A

    ADS  Google Scholar 

  73. I.V. Chapman, J.G. Pronko, T.T. Bardin, T.R. Fisher, J.D. Perez, and L. Senbetu, Specific-Heat Measurements on High-Tc Superconductors Using Accelerated Ions as the Heat Pulse, Nucl. Instrum. Methods Phys. Res. B, 1989, 40(41), p 1088-1092

    Article  ADS  Google Scholar 

  74. D.L. Martin, The Specific Heat of Copper From 20° to 300°K, Can. J. Phys., 1960, 38, p 17-24

    Article  ADS  Google Scholar 

  75. D.B. Downie and J.F. Martin, An Adiabatic Calorimeter for Heat-Capacity Measurements Between 6 and 300 K. The Molar Heat Capacity of Aluminium, J. Chem. Thermodyn., 1980, 12, p 779-786

    Article  Google Scholar 

  76. R.E. Pawal and E.E. Stansbury, The Specific Heat of Copper, Nickel and Copper-Nickel Alloys, J. Phys. Chem. Solids, 1965, 26, p 607-613

    Article  ADS  Google Scholar 

  77. C.C. Yeh and C.R. Brooks, The Heat Capacity of Platinum From 350 to 1200 K: Experimental Data and an Analysis of Contributions, High Temp. Sci., 1973, 5, p 403-413

    Google Scholar 

  78. A.S. Dobrosavljević and K.D. Maglić, Heat Capacity and Electrical Resistivity of Copper Research Material for Calorimetry, High Temp. High Pressures, 1991, 23, p 129-133

    Google Scholar 

  79. T.W. Richards and F.G. Jackson, The Specific Heat of the Elements at Low Temperatures, Z. Physik. Chem., 1910, 70, p 414-451

    Google Scholar 

  80. F. Koref, Messungen der Spezifischen Wärme bei tiefen Temperaturen mit dem Kupferkalorimeter, Ann. Phys., 1911, 341, p 49-73

    Article  Google Scholar 

  81. J. Dewar, Atomic Specific Heats Between the Boiling Points of Nitrogen and Hydrogen. I. The Mean Atomic Specific Heats at 50º Absolute of the Elements a Periodic Function of the Atomic Weights, Proc. R. Soc. Lond. A, 1913, 89, p 158-169

    Article  ADS  Google Scholar 

  82. H.J. Boosz, Die Mittleren Spezifischen Wärmen von Hartmetallen zwischen Zimmertemperaturen und - 190°C, Metallics, 1957, 11, p 22-23

    Google Scholar 

  83. S. Stølen and F. Grønvold, Critical Assessment of the Enthalpy of Fusion of Metals Used as Enthalpy Standards at Moderate to High Temperatures, Thermochim. Acta, 1999, 327, p 1-32

    Article  Google Scholar 

  84. J.W. Richards, The Specific Heats of the Metals, J. Franklin Inst., 1893, 136, p 37-53

    Article  Google Scholar 

  85. F. Glaser, Schmelzwärmen—und Spezifische Wärmebestimmungen von Metallen bei Höheren Temperaturen, Metallurgie, 1904, 1, p 121-128

    Google Scholar 

  86. F. Wüst, A. Meuthen, and R. Durrer, Die Temperatur-Wärmeinhaltskurven der Technisch Wichtigen Metalle, Forsch. Gebiete Ingenieurw., 1918, 204, p 1-63

    Google Scholar 

  87. S. Umino, On the Latent Heat of Fusion of Several Metals and Their Specific Heats at High Temperatures, Sci. Rep. Tôhuku Univ., 1926, 15, p 597-617

    Google Scholar 

  88. H. Esser, R. Averdieck, and W. Grass, Wärmeinhalt einiger Metalle, Legierungen und Schlackenbildner bei Temperaturen bis 1200º, Arch. Eisenhuttenw., 1933, 6, p 289-292

    Google Scholar 

  89. W. Oelsen, E. Schürmann, and D. Buchholz, Kalorimetrie und Thermodynamik der Kupfer- Wismut-Legierungen, Arch. Eisenhuttenw., 1961, 32, p 39-46

    Google Scholar 

  90. E. Schürmann and A. Kaune, Kalorimetrie und Thermodynamik der Kupfer-Blei- Legierungen, Z. Metallkde, 1965, 56, p 453-461

    Google Scholar 

  91. R.N. Dokken and J.F. Elliott, Calorimetry at 1100º to 1200°C: The Copper-Nickel, Copper-Silver, Copper-Cobalt Systems, Trans. Met. Soc. AIME, 1965, 233, p 1351-1358

    Google Scholar 

  92. O. Vollmer and R. Kohlhaas, Die Atom- und Schmelzwärme von Kupfer, Silber und Gold, Z. Metallkde, 1968, 59, p 273-277

    Google Scholar 

  93. N.A. Nedumov, Metals and Alloys, Differential Thermal Analysis, R.C. Mackenzie, Ed., Academic, New York, London, 1970, p 161-191

    Google Scholar 

  94. G. Pottlacher, E. Kaschnitz, and H. Jäger, Investigations of Thermophysical Properties of Liquid Metals With a Rapid Resistive Heating Technique, J. Non-Cryst. Solids, 1993, 156-158, p 374-378

    Article  ADS  Google Scholar 

  95. M. Baricco, L. Battezzati, and P. Rizzi, Calorimetric Measurements on Some Undercooled Metals and Alloys, J. Alloys Compd., 1995, 220, p 212-216

    Article  Google Scholar 

  96. K.K. Kelley, Contributions to the Data on Theoretical Metallurgy. V. Heats of Fusion of Inorganic Substances, U.S. Bur. Mines Bull. 393, 1936

  97. M.W. Nathan and M. Leider, Studies of Bismuth Alloys. I. Liquidus Curves of the Bismuth-Copper, Bismuth-Silver and Bismuth-Gold Systems, J. Phys. Chem., 1962, 66, p 2012-2015

    Article  Google Scholar 

  98. I.I. Novikov, V.V. Roshchupkin, and L.K. Fordeeva, The Enthalpy and Heat Capacity of Copper in Melting, Fiziko-Mekhanicheskie i Teplofizicheskie Svoistva Metallov (The Physicochemical and Thermal Properties of Metals), I.I. Novikova, N.N. Rykalin, and I.I. Novikov, Ed., Nauka, Moscow, 1976, p 90-96

    Google Scholar 

  99. E.V. Orlik and G.I. Petrunin, Apparatus for the Determination of the Enthalpy of Fusion and Thermal Parameters of Compounds in the Temperature Range 800–2000 K, Vest. Mosk. Univ. Ser. 3 Fiz. Astron., 1981, 22(4), p 69-71

    Google Scholar 

  100. N.A. Kanaev, S.V. Lebedev, A.I. Savvatimskii, N.V. Stepanova, and B.A. Fochenkov, Electrical Resistivity and Enthalpy of Solid and Molten Copper, Brasses and Bronzes, Izv. Akad. Nauk SSSR Metally, 1989, 3, p 48-55, Russian MetallurgyMetally, 1989 (3), 45-52

    Google Scholar 

  101. V.Y. Chekhovskoi, V.D. Tarasov, and YuV Gusev, Calorific Properties of Liquid Copper, Teplofiz. Vys. Temp., 2000, 38, p 418-423, High Temp., 2000, 38, 394-399

    Google Scholar 

  102. V.Y. Chekhovskoi, Y.V. Gusev, and V.D. Tarasov, Experimental Study of the Specific Heat and Enthalpy of Copper in the Range 300–2000 K, High Temp. High Pressures, 2002, 34, p 291-298

    Article  Google Scholar 

  103. C. Cagran, B. Wilthan, and G. Pottlacher, Enthalpy, Heat of Fusion and Specific Electrical Resistivity of Pure Silver, Pure Copper and the Binary Ag-28Cu Alloy, Thermochim. Acta, 2006, 445, p 104-110

    Article  Google Scholar 

  104. V.Y. Chekhovskoi and V.D. Tarasov, The Caloric Properties of Copper: Thermal Vacancies, Zh. Fiz. Khim., 2000, 74, p 208-212, Russ. J. Phys. Chem. 74, 150–154

    Google Scholar 

  105. L.A. Stretz and R.G. Bautista, The High Temperature Heat Content of Liquid Yttrium by Levitation Calorimetry, Metall. Trans., 1974, 5, p 921-928

    Article  Google Scholar 

  106. L.K. Kuntz and R.G. Bautista, The Heat Capacities and Heat Content of Molten Cerium by Levitation Calorimetry, Metall. Trans. B, 1976, 7, p 107-113

    Article  Google Scholar 

  107. A.I. Akhmatova, Thermal Capacity of Fused Gallium and Copper at High Temperature, Izmer. Tekh., 1967, 8, p 14-17, Meas. Tech. 1967, 909–912

    Google Scholar 

  108. I.P. Mardykin and L.P. Filippov, Thermal Properties of Liquid Metals. I, Copper, Antimony, Fiz. Khim. Obrab. Mater., 1968, 1, p 110-112

    Google Scholar 

  109. A.K. Chaudhuri, D.W. Bonnell, L.A. Ford, and J.L. Margrave, Thermodynamic Properties by Levitation Calorimetry. I. Enthalpy Increments and Heats of Fusion for Copper and Platinum, High Temp. Sci., 1970, 2, p 203-212

    Google Scholar 

  110. D.W. Bonnell, Property Measurements at High Temperatures—Levitation Calorimetry Studies of Liquid Metals, Ph.D. Thesis, Rice University, Houston, Texas, 1972

  111. H.P. Stevens, Determination of the Enthalpy of Liquid Copper and Uranium with a Liquid Argon Calorimeter, High Temp. Sci., 1974, 6, p 156-166

    Google Scholar 

  112. W. Dokko and R.G. Bautista, The High Temperature Heat Content and Heat Capacity of Liquid Cerium-Copper Alloys by Levitation Calorimetry, Metall. Trans. B, 1980, 11, p 511-518

    Article  Google Scholar 

  113. J. Sugar and A. Musgrove, Energy Levels of Copper, Cu I, Through Cu XXIX, J. Phys. Chem. Ref. Data, 1990, 19, p 527-616

    Article  ADS  Google Scholar 

  114. S. Civiš, I. Matulková, J. Cihelka, P. Kubelík, K. Kawaguchi, and V.E. Chernov, Time-Resolved FTIR Emission Spectroscopy of Cu in the 1800-3800 cm−1 Region: Transitions Involving f and g States and Oscillator Strengths, J. Phys. B: At. Mol. Opt. Phys., 2011, 44, p 025002-1-025002-7

    ADS  Google Scholar 

  115. S. Civiš, I. Matulková, J. Cihelka, P. Kubelík, K. Kawaguchi, and V.E. Chernov, Low-Excited f-, g- and h-States in Au, Ag and Cu Observed by Fourier-Transform Infrared Spectroscopy in the 1000-7500 cm−1 Region, J. Phys. B: At. Mol. Opt. Phys., 2011, 44, p 105002-105002-10

    Article  ADS  Google Scholar 

  116. H.G. Kolsky, R.M. Gilmer P.W. Gilles, The Thermodynamic Properties of 54 Elements Considered as Ideal Monatomic Gases. U.S. Atomic Energy Commission Rep. LA 2110, 1957

  117. P.J. Mohr, B.N. Taylor, and D.B. Newell, CODATA Recommendations of the Fundamental Physical Constants: 2010, Rev. Mod. Phys., 2012, 84, p 1527-1605

    Article  ADS  Google Scholar 

  118. P.J. Mohr, B.N. Taylor, and D.B. Newell, CODATA Recommendations of the Fundamental Physical Constants, J. Phys. Chem. Ref. Data, 2012, 41, p 043109-1-043109-84

    Article  ADS  Google Scholar 

  119. M.H. Rand, Priv. Commun., 2009

  120. M.D. Morse, Clusters of Transition-Metal Atoms, Chem. Rev., 1986, 86, p 1049-1109

    Article  Google Scholar 

  121. R.D. Page and C.S. Gudeman, Rotationally Resolved Dicopper (Cu2) Laser-Induced Fluorescence Spectra, J. Chem. Phys., 1991, 94, p 39-51

    Article  ADS  Google Scholar 

  122. R.S. Ram, C.N. Jarman, and P.F. Bernath, Fourier-Transform Emission Spectroscopy of the Copper Dimer, J. Mol. Spectrosc., 1992, 156, p 468-486

    Article  ADS  Google Scholar 

  123. A.I. Chegodaev, E.L. Dubinin, A.I. Timofeev, N.A. Vatolin, and V.I. Kapitanov, The Vapour Pressures of Liquid Metals at High Temperature, Zh. Fiz. Khim., 1978, 52, p 2124, Russ.J.Phys.Chem., 1978, 52, 1229

    Google Scholar 

  124. V.I. Severin, YuA Priselkov, A.V. Tseplyaeva, N.E. Khandamirova, N.A. Chernova, and I.V. Golubtsov, Study of the Vaporization of Copper, Teplofiz. Vys. Temp., 1998, 36, p 577-582, High Temp., 1998, 36, 553-558

    Google Scholar 

  125. R.J. Ackermann and E.G. Rauh, Vapor Pressures of Scandium, Yttrium and Lanthanum, J. Chem. Phys., 1962, 36, p 448-452

    Article  ADS  Google Scholar 

  126. T.P.J.H. Babeliowski, Mass Spectrometric Determination of the Heat of Vaporization of Some Solid Elements, Physica, 1962, 28, p 1160-1169

    Article  ADS  Google Scholar 

  127. D.F. Avery, J. Cuthbert, N.J.D. Prosser, and C. Silk, High Temperature Vaporization Studies by Mass Spectrometry I: The Coinage Metals—a Discussion of the Method and Errors, J. Sci. Instrum., 1966, 43, p 436-442

    Article  ADS  Google Scholar 

  128. D.E. Moore, D. Robinson, and B.B. Argent, The Use of High Resolution Mass Spectrometry in the Measurement of Thermodynamic Properties of Metallic Systems, J. Phys. E: Sci. Instrum., 1975, 8, p 641-648

    Article  ADS  Google Scholar 

  129. J. Golonka, J. Botor, and M. Dulat, Study of Cu-Ag Liquid Solutions by Combined Effusion Vaporization and Mass Spectrometry Sensing, Met. Technol., 1979, 6, p 267-272

    Article  Google Scholar 

  130. D.A. Katsov, B.V. Lvov, L.K. Polzik, and YuA Semenov, Investigation of the Process of the Formation of an Absorbing Layer of Atoms in Graphite Furnaces in Atomic Absorption Analysis, Zh. Prikl. Spektrosk., 1977, 26, p 598-605, J.Appl.Spectrosc., 1977, 26, 430-436

    Google Scholar 

  131. J. Vrestal and J. Tomiska, Ein Knudsenzellen-Monopolmassenspektrometer für den Einsatz in der Hochtemperaturthermodynamik, Monatsch. Chem., 1993, 124, p 1099-1106

    Article  Google Scholar 

  132. H.E. Greenwood, An Approximate Determination of the Boiling Point of Metals, Proc. R. Soc. Lond. A, 1909, 82, p 396-408

    Article  ADS  Google Scholar 

  133. H.E. Greenwood, The Influence of Pressure on the Boiling Points of Metals, Proc. R. Soc. Lond. A, 1910, 83, p 483-491

    Article  ADS  Google Scholar 

  134. W. Rosenhain and D. Ewen, Intercrystalline Cohesion in Metals, J. Inst. Met., 1912, 8, p 149-185

    Google Scholar 

  135. O. Ruff and B. Bergdahl, Arbeiten im Gebiet Hoher Temperaturen-Die Messung von Dampfspannungen bei Sehr Hohen Temperatuen Nebst Einigen Beobachtungen Über die Löslichkeit von Kohlenstoff in Metallen, Z. Anorg. Allgem. Chem., 1919, 106, p 76-94

    Article  Google Scholar 

  136. O. Ruff and S. Mugdan, Die Messung von Dampfdrucken bei Hohen Temperaturen und die Dampfdrucke der Alkalihalogenide, Z. Anorg. Allgem. Chem., 1921, 117, p 147-171

    Article  Google Scholar 

  137. E. Mack, G.G. Osterhof, and H.M. Kraner, Vapor Pressure of Copper Oxide and of Copper, J. Am. Chem. Soc., 1923, 45, p 617-623

    Article  Google Scholar 

  138. O. Ruff and M. Konschak, Dampfdruckmessungen am Cu, Au, Al2O3, SiO2, Si and SiC.Des Letzteren Bildung und Zersetzung, Z. Elektrochem., 1926, 32, p 515-525

    Google Scholar 

  139. H.A. Jones, I. Langmuir, and G.M.J. Mackay, The Rates of Evaporation and the Vapor Pressures of Tungsten, Molybdenum, Platinum, Nickel, Iron, Copper and Silver, Phys. Rev., 1927, 30, p 201-214

    Article  ADS  Google Scholar 

  140. P. Harteck, Dampfdruckmessungen von Ag, Au, Cu, Pb, Ga, Sn und Berechnung der Chemischen Konstanten, Z. Physik. Chem., 1928, 134, p 1-20

    Google Scholar 

  141. E. Baur and R. Brunner, Dampfdruckmessungen an Hochsiedenden Metallen, Helv. Chim. Acta, 1934, 17, p 958-969

    Article  Google Scholar 

  142. A.L. Marshall, R.W. Dornte, and F.J. Norton, The Vapor Pressure of Copper and Iron, J. Am. Chem. Soc., 1937, 59, p 1161-1166

    Article  Google Scholar 

  143. A.H. Daane, The Vapor Pressures of Lanthanum and Praseodymium, U.S. Atomic Energy Commission, Rep. AECD-3209 (ISC-121), 1950

  144. R.K. Edwards and J.H. Downing, Mechanisms of Permeation of Silver, Copper and Mercury Gases of Solid Graphite Walls, J. Phys. Chem., 1955, 59, p 1079-1083

    Article  Google Scholar 

  145. O. Knacke and R. Schmolke, Über die Verdampfung sehr Dünner Kupfer- und Silberschichten, Z. Metallkde, 1956, 47, p 22-24

    Google Scholar 

  146. A.N. Nesmeyanov, L.A. Smakhtin, and V.I. Lebedev, The Measurement of the Vapor Pressures of the Solid Solutions Au-Ag and Ag-Cu, Dokl. Akad. Nauk SSSR, 1957, 112, p 700-702, Proc.Acad.Sci.USSRPhys. Chem. Section, 1957, 112, 101-104

    Google Scholar 

  147. A.N. Nesmeyanov, L.A. Smakhtin, DYa Choporov, and V.I. Lebedev, Investigation into the Thermodynamics of Solid Solutions of Gold, Silver and Copper. I, Zh. Fiz. Khim., 1959, 33, p 342-348

    Google Scholar 

  148. R.B. McLellan and R. Shuttleworth, The Vapor Pressure of Solid Copper, Z. Metallkd. 1960, 51, p 143-144

    Google Scholar 

  149. P. Grieveson, G.W. Hooper, and C.B. Alcock, The Vapor Pressures of the Liquid Metals Copper, Silver and Gold, The Physical Chemistry of Process Metallurgy—Part 1, G.R. Pierre, Ed., Interscience, New York, 1961, p 341-352

    Google Scholar 

  150. A. Kirshenbaum and J.A. Cahill, The Density of Liquid Tin From Its Melting Point to Its Normal Boiling Point and an Estimate of Its Critical Constants, Trans. Q. ASM, 1962, 55, p 844-847

    Google Scholar 

  151. A. Kirshenbaum and J.A. Cahill, The Direct Determination of the Boiling Point of Tin, J. Inorg. Nucl. Chem., 1963, 25, p 232-234

    Article  Google Scholar 

  152. H.Matern H, Investigation of the Evaporation of Some Metals and Alloys, Cand. Sci. (Chem.), Diss., Moscow State University. 1968

  153. YuA Karasev, LSh Tsemekhman, and S.E. Vaisburd, Vapor Pressure of Iron, Cobalt and Copper Above the Melting Point, Zh. Fiz. Khim., 1971, 45, p 2068-2070 (Russ.J.Phys.Chem., 1971, 45, 1172-1173)

    Google Scholar 

  154. A.M. Nemets and G.I. Nikolaev, Determination of the Saturated Vapor Pressure of Copper, Titanium and Vanadium by Atomic Absorption, Zh. Prikl. Spektrosk., 1973, 18, p 571-578 (J.Appl.Spectrosc., 1973, 18, 418-423)

    Google Scholar 

  155. A.M. Nemets, G.I. Nikolaev, V.G. Flisyuk, and N.V. Bodrov, Distribution of Metal Vapor Concentration in an Open Cuvette with a Graphite Heater During Evaporation in an Inert Medium, Zh. Prikl. Spektrosk., 1974, 21, p 795-798 (J.Appl.Spectrosc., 1974, 21, 1442-1445)

    Google Scholar 

  156. V.G. Muradov, EYu Yablochkov, and V.S. Rogatskin, Use of an Atomic Absorption Method for Determination of the Saturated Vapor Pressure of Solid Copper, Uch. Zap. Ul’yanovsk. Gos. Ped. Inst., 1974, 27, p 22-26

    Google Scholar 

  157. B.M. Novoselov, E.L. Dubinin, and A.I. Timofeev, Measurements of Vapor Pressure of Pure Metals at High Temperatures using the Effusion-Torsion Method, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., 1978, 6, p 41-47

    Google Scholar 

  158. S.E. Vaisburd, I.Sh. Tsemekhman, A.V. Taberko and Yu.A. Karasev, Vapor Pressure Over Molten Metals: Iron, Cobalt, Nickel, Palladium, Copper, Silver, Gold, Tin and Lead, Protsessy Tsvetn. Metall. Nizk. Davleniyakh, A.I. Manokhin (Ed.), Izd. Nauka, Moscow, 1983, p 120-128

  159. V.K. Panday and A.K. Ganguly, Measurement of Monatomic Vapor Concentrations of Some Elements by Atomic Absorption: Cu, Ag, Au, Mn and Al, Appl. Spectrosc., 1985, 39, p 526-531

    Article  ADS  Google Scholar 

  160. V.I. Severin, A.V. Tseplyaeva, YuA Priselkov, and L.P. Ryabtseva, Vapor Pressure and Heat of Sublimation of Copper, Tepolfiz. Vys. Temp., 1986, 24, p 487-492 (High Temp. 1986, 24, 363-368)

    Google Scholar 

  161. E.M. Starovoitov, Determination of the Vapor Pressure and Heat of Sublimation of Copper, Teplofiz. Vys. Temp., 1987, 25, p 1022-1024

    Google Scholar 

  162. OYu Subbotina, N.V. Kishkoparov, and I.V. Frishberg, The Vapor Pressure of Copper, Tin and Cu-Sn Alloys in the High-Temperature Region, Teplofiz. Vys. Temp., 1999, 37, p 220-225 (High Temp., 1999, 37, 198-203)

    Google Scholar 

  163. Y.J. Duan, B. Chen, Y.C. Ma, M. Gao, and K. Liu, Determination of Vapor Pressure of Liquid Copper by Carrier Gas Method, J. Mater. Sci. Technol., 2013, 29, p 1209-1213

    Article  Google Scholar 

  164. H.N. Hersh, The Vapor Pressure of Copper, J. Am. Chem. Soc., 1953, 75, p 1529-1531

    Article  Google Scholar 

  165. J.W. Edwards, H.L. Johnston, and W.E. Ditmars, Vapor Pressures of Inorganic Substances. XI. Titanium between 1587 and 1764°K and Copper between 1143 and 1292°K, J. Am. Chem. Soc., 1953, 75, p 2467-2470

    Article  Google Scholar 

  166. J.P. Morris and G.R. Zellars, Vapor Pressure of Liquid Copper and Activities in Liquid Fe-Cu Alloys, Trans. AIME 1956, 206, 1086-1090 (J. Metals, 1956, 8, 1086-1090)

  167. A. Krupkowski and J. Golonka, Vapour Pressures of Liquid Copper and Silver, Bull. Acad. Pol. Sci. Ser. Sci. Tech., 1964, 12, p 69-74

    Google Scholar 

  168. J.M. McCormack, J.R. Myers, and R.K. Saxer, Vapor Pressure of Liquid Copper, J. Chem. Eng. Data, 1965, 10, p 319-320

    Article  Google Scholar 

  169. A. Ponslet and D. Bariaux, Vitesse d’Evaporation et Pression de Vapeur du Cuivre, Bull. Classe. Sci. Acad. R. Belg., 1966, 52, p 248-260

    Google Scholar 

  170. K.M. Myles and J.B. Darby, Thermodynamic Properties of Solid Palladium-Copper and Platinum-Copper Alloys, Acta Met., 1968, 16, p 485-492

    Article  Google Scholar 

  171. A.P. Pomerantsev, Investigation of Evaporation of Binary Alloys on the Basis Copper, Silver and Manganese Using Radionuclides, Cand. Sci. (Chem.) Diss., Moscow State University, 1980

  172. F. Geiger, C.A. Busse, and R.I. Loehrke, The Vapor Pressure of Indium, Silver, Gallium, Copper, Tin and Gold Between 0.1 and 3.0 Bar, Int. J. Thermophys., 1987, 8, p 425-436

    Article  ADS  Google Scholar 

  173. K. Franzreb, A. Wucher, and H. Oechsner, Absolute Cross Sections for Electron Impact Ionization of Ag2, Z. Phys. D, 1991, 19, p 77-79

    Article  ADS  Google Scholar 

  174. J. Drowart and P. Goldfinger, Investigation of Inorganic Systems at High Temperature by Mass Spectrometry, Angew. Chem. Int. Ed., 1967, 6, p 581-596

    Article  Google Scholar 

  175. P. Schissel, Dissociation Energies of Cu2 Ag2 and Au2, J. Chem. Phys., 1957, 26, p 1276-1280

    Article  ADS  Google Scholar 

  176. M. Ackerman, F.E. Stafford, and J. Drowart, Mass Spectrometric Determination of the Dissociation Energies of the Molecules AgAu, AgCu and AuCu, J. Chem. Phys., 1960, 33, p 1784-1789

    Article  ADS  Google Scholar 

  177. D.W. Wilhite, Investigation of High Temperature Gaseous Species by Knudsen Cell Mass Spectrometry above the Condensed Systems – Cu-Y-Ru-C, Ag-Y-Ru-C and Au-Y-Ru-C, Masters Thesis, Texas A & M University, College Station, Texas, 1988

  178. J. Drowart and R.E. Honig, Mass Spectrometric Study of Copper, Silver and Gold, J. Chem. Phys., 1956, 25, p 581-582

    Article  ADS  Google Scholar 

  179. J. Drowart and R.E. Honig, a Mass Spectrometric Method for the Determination of Dissociation Energies of Diatomic Molecules, J. Phys. Chem., 1957, 61, p 980-985

    Article  Google Scholar 

  180. K. Hilpert and K.A. Gingerich, Atomization Enthalpies of the Molecules Cu3, Ag3 and Au3, Ber. Bunsengen. Phys. Chem., 1980, 84, p 739-745

    Article  Google Scholar 

  181. K. Hilpert, Mass Spectrometric Determination of the Dissociation Energies of CuTb (g), CuDy (g) and CuHo (g), Ber. Bunsengen. Phys. Chem., 1979, 83, p 161-167

    Article  Google Scholar 

  182. H.E. Schmitz, On the Determination of Specific Heats, Especially at Low Temperatures, Proc. R. Soc. Lond., 1903, 72, p 177-192

    Article  Google Scholar 

  183. W. Nerst, Der Energieinhalt Fester Stoffe, Ann. Phys., 1911, 341, p 395-439

    Article  Google Scholar 

  184. W.H. Keesom and H. Kammerlingh Onnes, The Specific Heat at Low Temperatures. I. Measurements of the Specific Heats of Lead Between 14 and 80°K and Copper Between 15 and 22°K, Comm. Phys. Lab. Univ. Leiden, No. 143, 1914

  185. E.H. Griffith and E. Griffiths, The Capacity for Heat of Metals at Different Temperatures, Proc. R. Soc. Lond. A, 1913, 88, p 549-560

    Article  ADS  Google Scholar 

  186. E.H. Griffith and E. Griffiths, IV, The Capacity for Heats of Metals at Different Temperatures, Being an Account of Experiments Performed in the Research Laboratory of the University College of South Wales and Monmouthshire, Phil. Trans. R. Soc. A, 1913, 213, p 119-185

    Article  ADS  Google Scholar 

  187. E.H. Griffith and E. Griffiths, The Capacity for Heat of Metals at Low Temperatures, Phil. Trans. R. Soc. A, 1914, 214, p 319-357

    Article  ADS  Google Scholar 

  188. W.H. Keesom and H. Kammerlingh Onnes, The Specific Heat at Low Temperatures. II. Measurement on the Specific Heat of Copper Between 14 and 90 K, Comm. Phys. Lab. Univ. Leiden, No.147a, 1915

  189. A. Denizot, Sur le Rapport de la Chaleur Spécifique à la Température, Bl. Soc. Amis. Sci. Poznan B, 1926, 1-3

  190. A. Eucken and W. Werth, Die Spezifische Wärme einiger Metalle und Metallegierungen bei tiefen Temperaruren, Z. Anorg. Allgem. Chem., 1930, 188, p 152-172

    Article  Google Scholar 

  191. S.M. Dockerty, On the Specific Heat of Copper From –78º to 0°C, Can. J. Res., 1933, 9, p 84-93

    Article  Google Scholar 

  192. C.G. Maier and C.T. Anderson, The Disposition of Work Energy Applied to Crystals, J. Chem. Phys., 1934, 4, p 513-527

    Article  Google Scholar 

  193. J.A. Kok and W.H. Keesom, Measurement of the Atomic Heats of Platinum and of Copper From 1.2 to 20°K, Physica, 1936, 3, p 1035-1045

    Article  ADS  Google Scholar 

  194. S.M. Dockerty, The Specific Heat of Copper From 30º to 200º, Can. J. Res. A., 1937, 15, p 59-66

    Article  Google Scholar 

  195. S. Aoyama and E. Kanda, Specific Heat of Nickel and Cobalt at Low Temperature, J. Chem. Soc. Japan, 1941, 62, p 312-315

    Google Scholar 

  196. W.F. Giauque and P.F. Meads, The Heat Capacities and Entropies of Aluminium and Copper From 15 to 300°K, J. Am. Chem. Soc., 1941, 63, p 1897-1901

    Article  Google Scholar 

  197. F.X. Eder, Internal Energy of Deformed Metals at Low Temperatures, Annexe 1955-2 au Bulletin de l’Institut International du Froid, 1955, p 137-141

  198. T.A. Sandenaw, Heat Capacity of Copper Below 300°K. A Test of Two Calorimeter Designs, U.S. Atomic Energy Commission Rep. LA 2307, 1959

  199. D.L. Martin, A Modified Continuous-Heating Calorimeter for the Temperature Range 15º to 300°K, Can. J. Phys., 1962, 40, p 1166-1173

    Article  ADS  Google Scholar 

  200. W.A. Tilden and J. Perry, The Specific Heats of Metals and the Relation of Specific Heat to Atomic Weight, Phil. Trans. R. Soc. A, 1900, 194, p 233-255

    Article  MATH  ADS  Google Scholar 

  201. W. Jaeger and H. Diesselhorst, Wärmeleitung, Elektricitätsleitung, Wärmecapacacität und Thermokraft einiger Metalle, Abh. Phys. Tech. Reichanstalt., 1900, 3, p 269-424

    Google Scholar 

  202. G.W.A. Kahlbaum, K. Roth, and P. Siedler, Über Metalldestillation und Über Destillierte Metalle, Z. Anorg. Chem., 1902, 29, p 177-294

    Article  Google Scholar 

  203. W. Gaede, Über die Änderung der Spezifischen Wärme der Metalle mit der Temperature, Phys. Z., 1903, 4, p 105-106

    ADS  Google Scholar 

  204. W. Nerst, F. Koref, and F.A. Lindemann, Untersuchungen Über die Spezifische Wärme bei Tiefen Temperaturen, Ber. Berl. Acad., 1910, 1, p 247-261

    Google Scholar 

  205. D.R. Harper, III, Specific Heat of Copper in the Interval 0º to 50º, with a Note on Vacuum-Jacketed Calorimeters, J. Wash. Acad., 1914, 4, p 489-490

    Google Scholar 

  206. D.R. Harper, III, Specific Heat of Copper in the Interval 0º to 50º, with a Note on Vacuum-Jacketed Calorimeters, Natl. Bur. Stand. Tech. News Bull., 1915, 11, p 259-329

    Article  Google Scholar 

  207. H. Klinkhardt, Messung von Wahren Spezifischen Wärmen bei Hohen Temperaturen Durch Heizung mit Glühelektronen, Ann. Phys., 1927, 389, p 167-200

    Article  Google Scholar 

  208. H.L. Bronson and H.M. Chisholm, On the Specific Heat of Tungsten, Molybdenum and Copper, Proc. Nova Scotian Inst. Sci., 1929, 17, p 44-45

    Google Scholar 

  209. H. Seekamp, Über die Messung Wahrer Spezifischer Wärmen Fester und Flussiger Metalle bei Hohen Temperaturen, Z. Anorg. Allgem. Chem., 1931, 195, p 345-365

    Article  Google Scholar 

  210. C. Sykes, Methods for Investigating Thermal Changes Occurring During Transformations in a Solid Solution, Proc. R. Soc. Lond. A, 1935, 148, p 422-446

    Article  ADS  Google Scholar 

  211. K.Honda and M.Tokunaga M., On the True Specific Heat of Some Metals and Alloys, Sci. Rep. Tôhuka Univ. 1935, 23, 816-834

  212. H. Quinney and G.I. Taylor, The Emission of the Latent Energy due to Previous Cold Working When a Metal is Heated, Proc. R. Soc. Lond. A, 1937, 163, p 157-181

    Article  ADS  Google Scholar 

  213. W.J. Thomas and R.M. Davis, The Determination of Specific Heats by an Eddy Current Method. Part II. Experimental, Philos. Mag., 1937, 24, p 713-744

    Article  Google Scholar 

  214. A. Avramescu, Temperaturabhängigkeit der Wahren Spezifischen Wärme von Leitungskupfer und Leitungsaluminium bis zum Schmelzpunkt, Z. Tech. Phys., 1939, 20, p 213-217

    Google Scholar 

  215. F. Förster and G. Tschentke, Ein Verfahren zur Messung der Temperatur-Abhängigkeit von Elektrischem Widerstand und Spezifischer Wärme Fester und Flüssiger Metalle, Z. Metallkde, 1940, 32, p 191-195

    Google Scholar 

  216. B. Persoz, Nouvelles Méthodes de Mesure de la Chaleur Spécifique Vraie des Métaux a Haute Température, Ann. Phys., 1940, 14, p 237-301

    Google Scholar 

  217. J.B. Trice, J.J. Neely and C.E. Tetter Jr., The Heat Capacity of Beryllium Carbide Powder, U.S. Atomic Energy Commission, Rep. NEPA 816-SCR-28, 1948

  218. M.L. Picklesimer, Calorimetric Measurements on High Purity Iron and Eutectoid Steels, Ph.D. Thesis, University of Tennessee, 1954

  219. C.F. Lucks and H.W. Deem, Thermal Conductivities, Heat Capacities and Linear Thermal Expansion of Five Materials, Wright Air Development Center, Air Research and Development Command, U.S. Air Force, Wright-Patterson Air Force Base, Ohio, Tech. Rep. WADC-TR-55-496, 1956

  220. C.F. Lucks and H.W. Deem, Thermal Properties of Thirteen Metals, ASTM Spec. Tech. Publ. 227, 1958

  221. C.P. Butler and E.C.Y. Inn, A Radiometric Method for Determining Specific Heat at Elevated Temperatures, U.S. Naval Radiological Defence Lab., Tech. Rep. USNRDL-TR-235, 1958

  222. I.P.Bell, Fast Reactor: Physical Properties of Materials of Construction, U.K. Atomic Energy Authority, Industrial Group, R & DB (C), Tech. Note 127, 1959

  223. V.E. Lyusternik, Automatic Calorimeter for Quantitative Thermal Analysis of Heat Resistant Steels, Pribory Tekhn. Eksperim., 1959, 4, p 127-129

    Google Scholar 

  224. G.W. Lehman, Thermal Properties of Refractory Materials, Aeronautical Systems Division, Air Force Systems Command, U.S. Air Force, Wright-Patterson Air Force Base, Ohio, Tech. Rep. WADD-TR-60-581, 1960

  225. P.T. Howse Jr., C.D. Pears and S. Oglesby Jr., The Thermal Properties of Some Plastic Panels, Aeronautical Systems Division, Air Force Systems Command, U.S. Air Force, Wright-Patterson Air Force Base, Ohio, Tech. Rep. WADD-TR-60-657, 1961

  226. R.J. Jenkins and W.J. Parker, A Flash Method for Determining Thermal Diffusivity Over a Wide Temperature Range, Aeronautical Systems Division, Air Force Systems Command, U.S. Air Force, Wright-Patterson Air Force Base, Ohio, Tech. Rep. WADD-TR-61-95, 1961

  227. Y. Masuda, Calorimetric Study on the Sintering of Copper Powder Compact, Sci. Rep. Res. Inst. Tôhoku Univ., 1962, A14, p 156-164

    Google Scholar 

  228. YaA Kraftmakher, Vacancy Formation in Copper, Fiz. Tverd. Tela, 1967, 9, p 1850-1851 (Sov. Phys.- Solid State, 1967, 9, 1458)

    Google Scholar 

  229. C.R. Brooks, W.E. Norem, D.E. Hendrix, J.W. Wright, and W.C. Northcutt, The Specific Heat of Copper from 40 to 920°C, J. Phys. Chem. Solids, 1968, 29, p 565-574

    Article  ADS  Google Scholar 

  230. V.Y. Chekhovskoi and G.Z. Gerasina, True Heat Capacity of Copper and of 1Kh18N9T Steel in the 300-900°K Temperature Range, Teplofiz. Vys. Temp., 1971, 9, p 938-942

    Google Scholar 

  231. I.M. Chernenko and A.I. Ivon, Electrical Method for Heat Capacity Determinations of Materials, Zavod. Lab., 1976, 42, p 825-826

    Google Scholar 

  232. Y.S. Touloukian and E.H. Buyco, Specific Heat—Metallic Elements and Alloys, Thermophysical Properties of Matter, Vol 4, Y.S. Touloulian and C.Y. Ho, Ed., IFI/Plenum, New York, 1970,

    Google Scholar 

  233. W.A. Tilden, The Specific Heat of Metals and the Relation of Specific Heat to Atomic Weight, Proc. R. Soc. Lond., 1900, 66, p 244-247

    Article  Google Scholar 

  234. A. Magnus, A., Über die Bestimmung Spezifischer Wärmen, Ann. Phys., 1910, 336, p 597-608

    Article  Google Scholar 

  235. H. Schimpff, Über die Wärmekapazität von Metallen und Metallverbindungen, Z. Physik. Chem., 1910, 71, p 257-300

    Google Scholar 

  236. P. Schübel, Metallographische Mitteilungen aus dem Institut für Physikalische Chemie der Universität Göttingen.LXXXVII.Über die Wärmekapazität von Metallen und Metallverbindungen Zwischen 18-600º, Z. Anorg. Chem., 1914, 87, p 81-119

    Article  Google Scholar 

  237. F. Doerinckel and M. Werner, Über die Spezifische Wärme Technischer Cu-Zn-Legierungen bei Höheren Temperaturen, Z. Anorg. Allgem. Chem., 1921, 115, p 1-48

    Article  Google Scholar 

  238. W.A. Roth and W. Bertram, Messung der Spezifischen Wärmen von Metallurgisch Wichtigen Stoffen in einen Grösseren Temperaturintervall mit Hilfe von Zwei Neun Calorimetertypen, Z. Elektrochem., 1929, 35, p 297-308

    Google Scholar 

  239. R. Ruer and K. Kremers, Das System Kupfer-Zink, Z. Anorg. Allg. Chem., 1929, 184, p 193-231

    Article  Google Scholar 

  240. F.M. Jaeger, E. Rosenbohm, and J.A. Bottema, The Exact Measurement of the Specific Heats of Solid Substances at High Temperatures: VII. Metals in Stabilized and Non-stabilized Condition—Copper and Gold, Proc. Acad. Sci. Amsterdam, 1932, 35, p 772-779

    Google Scholar 

  241. D. Fieldhouse, J.C. Hedge, J.L. Lang, A.N.Takata and T.E.Waterman T.E., Measurements of Thermal Properties, Wright Air Development Center, Air Research and Development Command, U.S. Air Force, Wright-Patterson Air Force Base, Ohio, Tech. Rep. WADC-TR-55-495, Part 1, 1956

  242. D.S. Neel, C.D. Pears and S. Oglesby Jr., The Thermal Properties of Thirteen Solid Materials to 5000°F for Their Destruction Temperatures, Aeronautical Systems Division, Air Force Systems Command, U.S. Air Force, Wright-Patterson Air Force Base, Ohio, Tech. Rep. WADD-TR-60-924, 1961

  243. J. Booker, R.M. Paine and A.J. Stonehouse, Investigation of Intermetallic Compounds for Very High Temperature Applications, Aeronautical Systems Division, Air Force Systems Command, U.S. Air Force, Wright-Patterson Air Force Base, Ohio, Tech. Rep. WADD-TR-60-889, 1961

  244. G.R. Gathers, Thermophysical Properties of Liquid Copper and Aluminium, Int. J. Thermophys., 1983, 4, p 209-226

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author is indebted to Malcolm Rand for calculating the thermodynamic properties of the diatomic gas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Arblaster.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1157 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arblaster, J.W. Thermodynamic Properties of Copper. J. Phase Equilib. Diffus. 36, 422–444 (2015). https://doi.org/10.1007/s11669-015-0399-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-015-0399-x

Keywords

Navigation