Skip to main content
Log in

Thermodynamic Properties of Tungsten

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The thermodynamic properties of tungsten have been evaluated to 6200 K. Selected values include an enthalpy of sublimation of 855 ± 5 kJ/mol at 298.15 K and a boiling point at one atmosphere pressure of 6101 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J.W. Arblaster, Thermodynamic Properties of Silver, J. Phase Equilib. Diffus., 2015, 36(6), p 573-591

    Google Scholar 

  2. J.W. Arblaster, Thermodynamic Properties of Gold, J. Phase Equilib. Diffus., 2016, 37(2), p 229-245

    Google Scholar 

  3. J.W. Arblaster, Thermodynamic Properties of Beryllium, J. Phase Equilib. Diffus., 2016, 37(5), p 581-591

    Google Scholar 

  4. J.W. Arblaster, Thermodynamic Properties of Copper, J. Phase Equilib. Diffus., 2015, 36(5), p 422-444

    Google Scholar 

  5. J.W. Arblaster, Thermodynamic Properties of Hafnium, J. Phase Equilib. Diffus., 2014, 35(4), p 490-501

    Google Scholar 

  6. J.W. Arblaster, Thermodynamic Properties of Niobium, J. Phase Equilib. Diffus., 2017, 38(5), p 707-722

    Google Scholar 

  7. J.W. Arblaster, Thermodynamic Properties of Tantalum, Phase Equilib. Diffus., 2018, 39(2), p 255-272

    Google Scholar 

  8. J.W. Arblaster, Thermodynamic Properties of Vanadium, J. Phase Equilib. Diffus., 2017, 38(1), p 51-64

    Google Scholar 

  9. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelley, and D.D. Wagman, Selected Values of the Thermodynamic Properties of the Elements, American Society for Metals, Metals Park, Ohio, 1973

    Google Scholar 

  10. L.V. Gurvich, I.V.Veits, V.A. Medvedev, G.A. Bergman, V.S. Yungman, G.A. Khachkuruzov, V.S. Yorish, O.V. Dorofeeva, E.L. Osina, P.I.Tolmach, I.N. Przhevak’skii, I.I. Nazarenko, N.M. Aristova, E.A. Shenyavskaya, L.N. Gorokhov, A.L. Rogatskii, M.E. Efimov, V.Ya. Leonidov, Yu.G. Khait, A.G. Efimova, S.E. Tomberg, A.V. Gusarov, N.E. Khandamirova, G.N. Yurkov, L.R. Fokin, L.F. Kuratova and A.D. Gol’dshtein, in Thermodynamic Properties of Individual Substances, ed. by V.P. Glushko, L.V. Gurvich, G.A. Bergman, I.V. Veits, V.A. Medvedev, G.A. Khachkuruzov and V.S. Yungman, “Nauka”, Moscow, Vol. 4, 1982

  11. M.W. Chase Jr., NIST-JANAF Thermochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph., 1998, 9, p 1925–1929

  12. P. Gustafson, Evaluation of the Thermodynamic Properties of Tungsten, Int. J. Thermophys., 1985, 6, p 395-409

    ADS  Google Scholar 

  13. P. Tolias and EUROfusion MST1 Team, Analytical Expressions for Thermophysical Properties of Solid and Liquid Tungsten Relevant for Fusion Applications, Nucl. Mater. Energy, 2017, 13, p 52-57

    Google Scholar 

  14. V.A. Kirillin, A.E. Sheindlin, V.Ya. Chekhovskoi and V.A. Petrov, Thermodynamic Properties of Tungsten in the Range 0º to 3500°K. Zh. Fiz. Khim. 37, 2249–2256 (1963) (Russ. J. Phys. Chem. 37, 1212–1216, 1963)

  15. G.K. White and S.J. Collocott, Heat Capacity of Reference Materials: Cu and W, J. Phys. Chem. Ref. Data, 1984, 13, p 1251-1257

    ADS  Google Scholar 

  16. G.K. White and M.L. Minges, Thermophysical Properties of Some Key Solids: An Update, Int. J. Thermophys., 1997, 18, p 1269-1327

    ADS  Google Scholar 

  17. M.L. Reilly and G.T. Furukawa, Critical Analysis of the Heat Capacity Data of the Literature and Evaluation of Thermodynamic Properties of Cr, Mo and W from 0 to 300 K. National Bureau of.Standards, 1978, Unpublished work quoted by White and Collocott [15]

  18. V.Yu. Bodryakov, Correlation of Temperature Dependences of Thermal Expansion and Heat Capacity of Refractory Metal up to the Melting Point: Tungsten, Teplofiz.Vys.Temp. 53, 676–682 (2015) (High Temp. 53, 643–648, 2015)

  19. B.B. Triplett, N.E. Phillips, T.L. Thorp, D.A. Shirley, and W.D. Brewer, Critical Field for Superconductivity and Low-Temperature Normal State Heat Capacity of Tungsten, J. Low Temp. Phys., 1973, 12, p 499-518

    ADS  Google Scholar 

  20. R.E. Bedford, G. Bonnier, H. Maas, and F. Pavese, Recommended Values of Temperature on the International Temperature Scale of 1990 for a Selected Set of Secondary Reference Points, Metrologia, 1996, 33, p 133-154

    ADS  Google Scholar 

  21. Commission on Isotopic Abundances and Atomic Weights (CIAAW), Atomic Weights of the Elements 2017. www.ciaaw.org/atomic-weights.htm (2018)

  22. T.B. Douglas, Conversion of Existing Calorimetrically Determined Thermodynamic Properties to the Basis of the International Practical Temperature Scale of 1968, J. Res. Natl. Bur. Stand., 1969, 73A, p 451-470

    Google Scholar 

  23. R.L. Rusby, The Conversion of Thermal Reference Values to the ITS-90, J. Chem. Thermodynamics, 1991, 23, p 1153-1161

    Google Scholar 

  24. R.L. Rusby, R.P. Hudson, and M. Durieux, Revised Values for (t90–t68) from 630°C to 1064°C, Metrologia, 1994, 31, p 149-153

    ADS  Google Scholar 

  25. R.D. Weir and R.N. Goldberg, On the Conversion of Thermodynamic Properties to the Basis of the International Temperature Scale of 1990, J. Chem. Thermodynamics, 1996, 28, p 261-276

    Google Scholar 

  26. G.A. Alers, Use of Sound Velocity Measurements in Determining the Debye Temperature of Solids, Physical Acoustics–Principles and Methods, Vol. III, Part B: Lattice Dynamics, W.P. Mason, Ed., Academic Press, New York, 1965, p 1-42

    Google Scholar 

  27. K. Clusius and P. Franzosini, Ergebnisse der Tieftemperaturforschung. XXIII. Atom- und Elektronenwärme des Molybdäans und Wolframs zwischen 10°K und 273 K, Z. Naturforschg, 1959, 14, p 99-105

    ADS  Google Scholar 

  28. H.L. Bronson, H.M. Chisholm, and S.M. Dockerty, The Specific Heats of Tungsten, Molybdenum and Copper, Can. J. Res., 1933, 8, p 282-303

    Google Scholar 

  29. D.A. Ditmars, Measurement of the Relative Enthalpy of Tungsten between 273.15 and 1173.15 K: Derived Electronic Heat Capacity Coefficient, High Temp. High Press., 1979, 11, p 615-624

    Google Scholar 

  30. E.D. West and S. Ishihara, The Enthalpy of Tungsten From 1100 to 2600°K, Preliminary Report on the Thermodynamic Properties of Selected Light-Element and Some Related Compounds, Natl. Bur. Stand. Rep., 1968, 9803, p 80-87

    Google Scholar 

  31. A. Cezairliyan and J.L. McClure, High-Speed (Subsecond) Measurement of Heat Capacity, Electrical Resistivity, and Thermal Radiation Properties of Tungsten in the Range 2000 to 3600 K, J. Res. Nat. Bur. Stand., 1971, 75A, p 283-290

    Google Scholar 

  32. R.E. Taylor, Thermal Properties of Tungsten SRMs 730 and 799, Trans. ASME, 1978, 100, p 330-333

    Google Scholar 

  33. F. Righini, J. Spišiak, G.C. Bussolino and A. Rosso, in Fifth International Symposium on Temperature and Thermal Measurement in Industry and Science, TEMPMEKO’93, Prague, Czechoslovakia, 10-12 Nov. 1993. Thermophysical Properties of Tungsten Near Its Melting Point, Tech-Market, Prague, 1993, p. 360–366

  34. E. Arpaci and M.G. Frohberg, Enthalpy Measurements on Solid and Liquid Tungsten by Levitation Calorimetry, Z. Metallkde., 1984, 75, p 614-618

    Google Scholar 

  35. D.W. Bonnell, Measurement of the High Temperature Thermophysical Properties of Tungsten Group Liquids and Solids, National Bureau of Standards: Materials Measurements, Rept. NBSIR, 1983, 83–2772, p 113-130

    Google Scholar 

  36. G. Pottlacher, E. Kaschnitz, and H. Jäger, Investigations of Thermophysical Properties of Liquid Metals with a Rapid Resistive Heating Technique, J. Non-Cryst. Solids, 1993, 156–158, p 374-378

    ADS  Google Scholar 

  37. B. Wilthan, C. Cagran, and G. Pottlacher, Combined DSC and Pulse-Heating Measurements of Electrical Resistivity and Enthalpy of Tungsten, Niobium and Titanium, Int. J. Thermophys., 2005, 26, p 1017-1029

    ADS  Google Scholar 

  38. A.E. Kramida and T. Shirai, Compilation of Wavelengths, Energy Levels and Transition Probabilities for W I, and W II, J. Phys. Chem. Ref. Data, 2006, 35, p 423-683

    ADS  Google Scholar 

  39. J.-F. Wyart, Interpretation of the Odd Parity Energy Levels in the Spectrum of Neutral Tungsten, J. Phys. B: At. Mol. Opt. Phys., 2010, 43, p 074018-1-074018-8

    ADS  Google Scholar 

  40. H.G. Kolsky, R.M. Gilmer and P.W.Gilles, The Thermodynamic Properties of 54 Elements Considered as Ideal Monatomic Gases. U.S. Atomic Energy Commission Rept. LA 2110 (1957)

  41. P.J. Mohr, D.B. Newell, and B.N. Taylor, CODATA Recommended Values of the Fundamental Physical Constants: 2014, Rev. Mod. Phys., 2016, 88, p 035009-1-035009-73

    ADS  Google Scholar 

  42. P.J. Mohr, D.B. Newell, and B.N. Taylor, CODATA Recommended Values of the Fundamental Physical Constants, J. Phys. Chem. Ref. Data, 2014, 45, p 043102-1-043102-74

    ADS  Google Scholar 

  43. C. Zwikker, Physical Properties of Tungsten at High Temperature, Physica, 1925, 5, p 249-260

    Google Scholar 

  44. H.A. Jones, I. Langmuir, and G.M.J. Mackay, The Rates of Evaporation and the Vapor Pressures of Tungsten, Molybdenum, Platinum, Nickel, Iron, Copper and Silver, Phys. Rev., 1927, 30, p 201-214

    ADS  Google Scholar 

  45. R. Szwarc, E.R. Plante, and J.J. Diamond, Vapor Pressure and Heat of Sublimation of Tungsten, J. Res. Nat. Bur. Stand., 1965, 69A, p 417-421

    Google Scholar 

  46. D.L. Deadmore, Vaporization of Tantalum-Carbide-Hafnium Carbide Solid Solutions at 2500º to 3000 °K, NASA Tech. Note TN D-2512 (1964)

  47. D.L. Deadmore, Vaporization of Tantalum–Carbide–Hafnium Carbide Solid Solutions, J. Am. Ceram. Soc., 1965, 48, p 357-359

    Google Scholar 

  48. I.V. Golubtsov and A.N. Nesmeyanov, Investigation of the Evaporation of Tungsten, Molybdenum and Tantalum in a Vacuum, Vestn. Mosk. Univ. Ser. II, Khim., 1965, 5, p 31-33

    Google Scholar 

  49. E.R. Plante and A.B. Sessoms, Vapor Pressure and Heat of Sublimation of Tungsten, J. Res. Nat. Bur. Stand., 1973, 77A, p 237-242

    Google Scholar 

  50. M. Horowitz and J.G. Daunt, The Electronic and Lattice Specific Heats of W, Mo and Re, Phys. Rev., 1953, 91, p 1099-1106

    ADS  Google Scholar 

  51. J. Rayne, Specific Heats of Metals Below One Degree Absolute, Phys. Rev., 1954, 95, p 1428-1434

    ADS  Google Scholar 

  52. N.M. Wolcott, The Specific Heat of Transition Metals, Conference de Physique des Basses Témperatures, Paris, 2 to 8 Sep. 1955, Centre National de la Recherche Scientifique and UNESCO, Paris, 1956, p 286–289

  53. T.R. Waite, R.S. Craig, and W.E. Wallace, Heat Capacity of Tungsten between 4 and 15°K, Phys. Rev., 1956, 104, p 1240-1241

    ADS  Google Scholar 

  54. E. Bucher, F. Heiniger and J. Muller, Low Temperature Specific Heat of Solid Solutions of the Third Transition Series, Low Temperature Physics LT9, Proceedings of the IXth International Conference on Low- Temperature Physics, Part B, Columbus, Ohio, 31 Aug. to 4 Sep. 1964, J.G. Daunt, D.O. Edwards, F.J. Milford and M. Yaqub (Ed.), Plenum Press, New York (1965), p 1059–1065

  55. S.V. Lebedev, A.I. Savvatimskii and Yu.B. Smirnov, Measurement of Latent Heats of Fusion for Refractory Metals, Teplofiz. Vys. Temp., 9, 635–638 (1971) (High Temp., 9, 578–581, 1971)

  56. M.M. Martynyuk and V.I. Tsapkov, Relationship between the Electrical Resistivity of Niobium, Tantalum, Molybdenum and Tungsten and Their Enthalpy, Izv. Akad. Nauk SSSR Metally, 6, 63–67 (1974) (Russ. Metall.Metall, 6, 52–55, 1974)

  57. G. Wouch, E.L. Gray, R.T. Frost, and A.E. Lord, Jr., Estimation of Thermodynamic Properties from Solidification and Cooling Curves of Containerless Melts in the Terrestrial Environment and in Space, High Temp. Sci., 1978, 10, p 241-259

    Google Scholar 

  58. V.N. Senchenko and M.A. Sheindlin, Experimental Investigation of the Caloric Properties of Tungsten and Graphite Near Their Melting Points, Teplofiz. Vys. Temp., 25, 492–496 (1987) (High Temp. 25, 364–368, 1987)

  59. J.L. McClure and A. Cezairliyan, Measurement of the Heat of Fusion of Tungsten by a Microsecond-Resolution Transient technique, Int. J. Thermophys., 1993, 14, p 449-455

    ADS  Google Scholar 

  60. N.I. Kuskova, S.I. Tkachenko, and S.V. Koval, Investigation of the Heating Dynamics and Properties of Liquid Tungsten, Int. J. Thermophys., 1998, 19, p 341-345

    Google Scholar 

  61. I.Y. Dikhter and S.V. Lebedev, Measurement of the Specific Heat and the Heat of Fusion of Tungsten at High Temperatures by the Wire Explosion Technique, High Temp. High Press., 1970, 2, p 55-58

    Google Scholar 

  62. J.W. Shaner, G.R. Gathers, and C. Minichino, A New Apparatus for Thermophysical Measurements Above 2500°K, High Temp. High Press., 1976, 8, p 425-429

    Google Scholar 

  63. J.W. Shaner, G.R. Gathers and W.M. Hodgson, Thermophysical Measurements on Liquid Metals above 4000°K. Proceedings of the Seventh Symposium on Thermophysical Properties, Gaithersburg, Maryland, 10-12 May 1977, A. Cezailiyan (ed.), American Society of Mechanical Engineers, 1977, p 896–903

  64. U. Seydel, H. Bauhof, W. Fucke, and H. Wadle, Thermophysical Data for Various Transition Metals at High Temperatures Obtained by a Submicrosecond-Pulse-Heating Method, High Temp. High Press., 1979, 11, p 635-642

    Google Scholar 

  65. A. Berthault, L. Arles, and J. Matricon, High-Pressure High-Temperature Thermophysical Measurements on Tantalum and Tungsten, Int. J. Thermophys., 1986, 7, p 167-179

    ADS  Google Scholar 

  66. R.S. Hixson and M.A. Winkler, Thermophysical Properties of Solid and Liquid Tungsten, Int. J. Thermophys., 1990, 11, p 709-718

    ADS  Google Scholar 

  67. E. Kaschnitz, G. Pottlacher, and L. Windholz, High-Pressure, High-Temperature Thermophysical Measurements on Tungsten, High Press. Res., 1990, 4, p 558-560

    ADS  Google Scholar 

  68. É.Ya. Zandberg, N.I. Ionov and A.Ya. Totegode, Mass-Spectrometric Determination of the Heat of Vaporization of Atoms and Positive Ions in Sublimation of Polycrystalline Rhenium, Tungsten, Tantalum and Molybdenum, Zh. Tekh. Fiz. 35, 1504–1515 (1965) (Sov. Phys.-Tech. Phys. 10, 1164–1172, 1966)

  69. N. Sasaki, K. Kubo, and M. Asano, Mass Spectrometric Studies of the Work Function and the Heats of Sublimation of Atom and Positive Ion, Mass Spectro. Jpn., 1970, 18, p 1189-1194

    Google Scholar 

  70. G.R. Fonda, Evaporation Characteristics of Tungsten, Phys. Rev., 1923, 21, p 343-347

    ADS  Google Scholar 

  71. É.N. Marmer, V.V. Zhukov and A.F. Stukanov, Experimental Determination of the Stability of Tungsten Heaters in Vacuum at Temperatures up to 3273°K, Teplofiz. Vys. Temp. 3, 771–774 (1965) (High Temp. 3, 712–715, 1965)

  72. R.A. Schiffman and P.C. Nordine, Containerless Study of Metal Evaporation by Laser Induced Fluorescence, Mat. Res. Soc. Symp. Proc., 1987, 87, p 339-351

    Google Scholar 

  73. W.E. Forsythe and A.G. Worthing, The Properties of Tungsten and the Characteristics of Tungsten Lamps, Astrophys. J., 1925, 61, p 146-185

    ADS  Google Scholar 

  74. H.B. Wahlin and L.V. Whitney, Positive and Negative Thermionic Emission from Tungsten, Phys. Rev., 1936, 50, p 735-738

    ADS  Google Scholar 

  75. A.L. Reimann, The Evaporation of Atoms, Ions and Electrons from Tungsten, Philos. Mag., 1938, 25, p 834-838

    Google Scholar 

  76. N.A. Gorbatyi and G.N. Shuppe, On the Effect of Strong Electric Fields (106 v/cm) on the Evaporation and Resistivity of Metals (Mo, Ta, W), Zh. Tekh. Fiz. 28, 623–635 (1958) (Sov. Phys. Tech. Phys. 3, 587–596, 1958)

  77. I. Langmuir, The Vapor Pressure of Tungsten, Phys. Rev., 1913, 2, p 329-342

    ADS  Google Scholar 

  78. F. Lange, Untersuchungen Über die Spezifische Wärme bei Tiefen Temperaturen, Z. Physik. Chem., 1924, 110, p 343-362

    Google Scholar 

  79. C. Zwikker, Messungen der Spezifischen Wärme von Wolfram zwischen 90 und 2600º Abs, Z. Physik, 1928, 52, p 668-677

    ADS  Google Scholar 

  80. C. Zwikker and G. Schmidt, The Specific Heat of Tungsten between 90 and 2600º Absolute, Physica, 1928, 8, p 329-346

    Google Scholar 

  81. W. DeSorbo, Low Temperature Heat Capacity of Bismuth and Tungsten, J. Phys. Chem., 1958, 62, p 965-967

    Google Scholar 

  82. M. Pirani, Über die Messung der Spezifischen Wärme fester Körper bei Hohen Temperaturen, Ber. Deut. Physikal. Gesell., 1912, 10, p 1037-1050

    Google Scholar 

  83. A.G. Worthing, Atomic Heats of Tungsten and of Carbon at Incandescent Temperatures, Phys. Rev., 1918, 12, p 199-225

    ADS  Google Scholar 

  84. P.F. Gaehr, The Specific Heat of Tungsten at Incandescent Temperatures, Phys. Rev., 1918, 12, p 396-423

    ADS  Google Scholar 

  85. K.K. Smith and P.W. Bigler, Oscillations of Temperature of an Incandescent Filament and the Specific Heat of Tungsten, Phys. Rev., 1922, 19, p 268-271

    ADS  Google Scholar 

  86. L.I. Bockstahler, The Specific Heat of Incandescent Tungsten by an Improved Method, Phys. Rev., 1925, 25, p 677-685

    ADS  Google Scholar 

  87. J.H. Boggs and J.A. Wiebelt, An Investigation of a Particular Comparative Method of Specific Heat Determinations in the Temperature Range of 1500 to 2600°F, U.S. Atomic Energy Commission, Rept. TID-5734 (1960)

  88. R.L. Rudkin, W.J. Parker, and R.J. Jenkins, Measurement of the Thermal Properties of Metals at Elevated Temperatures, Temperature Its Measurement and Control in Science and Industry, C.M. Herzfeld, Ed., Springer, Berlin, 1962, p 523-534

    Google Scholar 

  89. G.C. Lowenthal, The Specific Heat of Metals between 1200°K and 2400°K, Aust. J. Phys., 1963, 16, p 47-67

    ADS  Google Scholar 

  90. O.A. Kraev, A Modified Modulation Method of Measuring the Specific Heat of Metals, Teplofiz. Vys. Temp., 5, 817–820 (1967) (High Temp. 5, 727–730, 1967)

  91. C. Affortit, Mesure de la Chaleur Spécifique des Métaux Jusqu’à Leur Température de Fusion, Centre d’Etudes Nucleares de Fontenay-aux-Roses, Commissariat à l’Énergie Atomique, Rapp. CEA-R3287 (1967)

  92. C. Affortit and R. Lallement, Appareil de Mesure de la Chaleur Spécifique des Métaux Jusqu’à Leur Température de Fusion, Rev. Int. Hautes Tempér. Et Refract., 1968, 5, p 19-26

    Google Scholar 

  93. U. Schmidt, O. Vollmer, and A. Kohlhaas, Thermodynamische Analyse Kalorimetrischer Messungen an Aluminium und Wolfram im Bereich Hoher Temperaturen, Z. Naturforschg., 1970, 25, p 1258-1264

    ADS  Google Scholar 

  94. M. Finnila, An AC Temperature Technique for Measuring the High Temperature Specific Heat of Metals, U.S. Atomic Energy Commission, Rept. UCRL-50962 (1970)

  95. L.P. Filippov and R.P. Yurchak, High Temperature Investigation of the Thermal Properties of Solids, Inzh. Fiz. Zh. 21, 561–577 (1971) (J. Eng. Phys. 21, 1209–1220, 1971)

  96. A.V. Arutyunov and L.P. Filippov, The Thermal Properties of Tungsten at High Temperature, Teplofizicheskie Svoistva Veshchestv i Materialov (Thermophysical Properties of Substances and Materials), 1972, 5, p 97-104

    Google Scholar 

  97. L.P. Filippow, Untersuchung der Thermischen Eigenschaften im Stoff an der Moskauer Universität, Int. J. Heat Mass Transfer, 1973, 16, p 865-885

    Google Scholar 

  98. Y.A. Kraftmakher, The Modulation Method for Measuring Specific Heat, High Temp. High Press., 1973, 5, p 433-454

    Google Scholar 

  99. M.M. Yanunkin, Specific Heat of Tungsten by Periodic Pulse Heating, Teplofiz. Vys. Temp., 21, 1115-1121 (1983) (High. Temp. 21, 848–853, 1983)

  100. F. Righini, J. Spisak, G.C. Bussolino, and A. Rosso, Measurement of Thermophysical Properties by a Pulse-Heating Method: Tungsten 1200 to 3600 K, High Temp. High Press., 1993, 25, p 193-203

    Google Scholar 

  101. N.L.J. Perović, K.D. Maglić, and G.S. Vukovi, Thermophysical Properties of Tungsten Electrodes by Subsecond Pulse Calorimetry, Int. J. Thermophys., 1996, 17, p 1047-1055

    ADS  Google Scholar 

  102. I.I. Novikov and P.G. Strelkov, Investigation of the Physical Properties of Substances at High Temperatures, Vestnik Akad. Nauk SSSR, 1964, 34, p 26-30

    Google Scholar 

  103. F. Wüst, A. Meuthen, and R. Durrer, Die Temperatur-Wärmeunhaltskurven der Technisch Wichtigen Metalle, Forsch. Gebiete Ingenieurw., 1918, 204, p 1-63

    Google Scholar 

  104. A. Magnus and H. Danz, Die Spezifische Wärme von Wolfram, Bor, Borstickstoff und Berlliumoxyd, Ann. Physik, Ser., 1926, 4(81), p 407-424

    ADS  Google Scholar 

  105. A. Magnus and H. Holzmann, Untersuchungen über die Spezifschen Wärmen von Tantal, Wolfram und Beryllium zwischen 100 und 900°C, Ann. Physik, Ser., 1929, 5(5), p 585-613

    ADS  Google Scholar 

  106. F.M. Jaeger and E. Rosenbohm, La Détermination Exacte des Chaleurs Spécifiques des Corps Solides aux Températures entre 0º et 1625°C, Rec. Trav. Chim., 1928, 47, p 513-557

    Google Scholar 

  107. F.M. Jaeger and E. Rosenbohm, II, La Détermination Exacte des Chaleurs Spécifiques Vraies du Tungstène, du Rhodium, du Palladium, du Ruthénium, de l’Osmium et de l’Iridium à des Temperatures entre 0º and 1625°C, Rec. Trav. Chim., 1932, 51, p 1-46

    Google Scholar 

  108. D.S. Neel, C.D. Pears and S. Oglesby Jr., The Thermal Properties of Thirteen Solid Materials to 5000 °F or Their Destruction Temperatures. Wright Air Development Division, Air Research and Development Command, United States Air Force, Wright- Patterson Air Force Base, Ohio, Rept. WADD-TR-60-924 (1960)

  109. M. Hoch and H.L. Johnston, A High Temperature Drop Calorimeter. The Heat Capacities of Tantalum and Tungsten between 1000º and 3000°K, J. Phys. Chem., 1961, 65, p 855-860

    Google Scholar 

  110. V.Y. Chekhovskoi, B.Y. Shumyatskii, and K.A. Yakimovich, Experimental Investigation of the Enthalpy of Tungsten in the Temperature Range 350–2000 °C, Inzh. Fiz. Zh., 1962, 5(10), p 13-18

    Google Scholar 

  111. V.A. Kirillin, A.E. Sheindlin and V.Y. Chekhovskoi, Enthalpy and Heat Capacity of Tungsten in the Temperature Range 0–2400°C, Dokl. Akad. Nauk SSSR, 142, 1323–1326 (1962) (Soviet PhysicsDoklady, 142 (6), 184–186, 1962)

  112. V.A. Kirillin, A.E. Sheindlin, and V.Y. Chekhovskoi, Thermodynamic Properties of Tungsten in the Range 0–2400°C, Teploenergetika, 1962, 9(2), p 63-66

    Google Scholar 

  113. R.A. Hein and P.N. Flagella, Enthalpy Measurements of UO2 and Tungsten to 3260º General Electric Company, Nuclear Materials and Propulsion Operation, Rept. GEMP-578 (1968)

  114. D.R. Fredrickson, R. Kleb, R.L. Nuttall, and W.N. Hubbard, A Drop Calorimeter with an Electron Beam Heated Furnace, Rev. Sci. Instrum., 1969, 40, p 1022-1025

    ADS  Google Scholar 

  115. L. Leibowitz, M.G. Chasanov, and L.W. Mishler, The Enthalpy of Solid Tungsten from 2800°K to Its Melting Point, Trans. Met. Soc. AIME, 1969, 245, p 981-984

    Google Scholar 

  116. E.E. Shpil’rain, D.N. Kagan, and L.S. Barkhatov, Thermodynamic Properties of the Condensed Phase of Alumina near the Melting Point, High Temp. High Press., 1972, 4, p 605-609

    Google Scholar 

  117. G. Morizur, A. Radenac, and J.C. Cretenet, Calorimètre à Chute 3000 K. Application à la Détermination de la Chaleur Spécifique du Tungstène, High Temp.-High Press., 1976, 8, p 113-120

    Google Scholar 

  118. A.G. Turchanin, S.A. Babenko and S.E. Ekimov, Apparatus for Accurate Determination of Enthalpy of Solids at High Temperatures. Enthalpy of Tungsten at 400–1400°K, Teplofiz. Vys. Temp. 18, 995–1001 (1980) (High Temp. 18, 755–760, 1980)

  119. V.D. Tarasov, Kh Irgashev, and V.Y. Chekhovskoi, Investigation of the Enthalpy of Tungsten in the Temperature Range 1250–2550 K, Teplofiz. Vys. Temp., 1980, 20, p 988-990

    Google Scholar 

  120. I.V. Semin’ko, A.D. Krivorotenko and E.N. Fomichev, Thermophysical Properties of Tungsten at High Temperatures, Porosh. Metall. 10, 72–75 (1984) (Sov. Powder Metall. Met. Ceram. 23(10), 800–802, 1984)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Arblaster.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arblaster, J.W. Thermodynamic Properties of Tungsten. J. Phase Equilib. Diffus. 39, 891–907 (2018). https://doi.org/10.1007/s11669-018-0689-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-018-0689-1

Keywords

Navigation