Skip to main content
Log in

Thermodynamic Properties of Silver

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The thermodynamic properties of silver have been evaluated to 2700 K. Selected values include an enthalpy of sublimation of 284.8 ± 0.9 kJ/mol for the monatomic gas at 298.15 K, a dissociation enthalpy D 0 of 157.7 ± 2.2 kJ/mol for the diatomic gas species at absolute zero, and a derived equilibrium boiling point of 2433 K at one atmosphere pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. H. Preston-Thomas, The International Temperature Scale of 1990 (ITS-90), Metrologia, 1990, 27, p 3-10 and 107

  2. J. Fischer, M. de Podesta, K.D. Hill, M. Moldover, L. Pitre, R. Rusby, P. Steur, O. Tamura, R. White, and L. Wolber, Present Estimates of the Differences between Thermodynamic Temperatures and the ITS-90, Int. J. Thermophys., 2011, 32, p 12-25

    Article  ADS  Google Scholar 

  3. M.E. Wieser, N. Holden, T.B. Coplen, J.K. Böhike, M. Berglund, W.A. Brand, P. Bièvre, M. Gröning, R.D. Loss, J. Meija, T. Hirata, T. Prohaska, R. Schoenberg, G. O’Connor, T. Walczyk, S. Yoneda, and X.-K. Zhu, Atomic Weights of the Elements 2011, Pure Appl. Chem., 2013, 85, p 1047-1078

    Article  Google Scholar 

  4. T.B. Douglas, Conversion of Existing Calorimetrically Determined Thermodynamic Properties to the Basis of the International Practical Temperature Scale of 1968, J. Res. Natl. Bur. Stand., 1969, 73A, p 451-470

    Article  Google Scholar 

  5. R.L. Rusby, The Conversion of Thermal Reference Values to the ITS-90, J. Chem. Thermodynamics, 1991, 23, p 1153-1161

    Article  Google Scholar 

  6. R.L. Rusby, R.P. Hudson, and M. Durieux, Revised Values for (t90-t68) from 630°C to 1064°C, Metrologia, 1994, 31, p 149-153

    Article  ADS  Google Scholar 

  7. R.D. Weir and R.N. Goldberg, On the Conversion of Thermodynamic Properties to the Basis of the International Temperature Scale of 1990, J. Chem. Thermodynamics, 1996, 28, p 261-276

    Article  Google Scholar 

  8. G.T. Furukawa, W.G. Saba, and M.L. Reilly, Critical Analysis of the Heat-Capacity Data of the Literature and Evaluation of Thermodynamic Properties of Copper, Silver and Gold from 0 to 300 K, Nat. Stand. Ref. Data Ser. Nat. Bur. Stand., NSRDS-NBS 18, 1968

  9. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelley, and D.D. Wagman, Selected Values of the Thermodynamic Properties of the Elements, American Society for Metals, Metals Park, 1973

    Google Scholar 

  10. J.D. Cox, D.D. Wagman, and V.A. Medvedev, CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp, New York, 1989

    Google Scholar 

  11. F. Geiger, C.A. Busse, and R.I. Loehrke, The Vapour Pressure of Indium, Silver, Gallium, Copper, Tin and Gold Between 0.1 and 3.0 Bar, Int. J. Thermophys., 1987, 8, p 425-436

    Article  ADS  Google Scholar 

  12. F.G. Brickwedde, H. Dijk, M. Durieux, J.R. Clement, and J.K. Logan, The 1958 He4 Scale of Temperatures, J. Res. Nat. Bur. Stand, 1960, 64A, p 1-17

    Article  Google Scholar 

  13. N.E. Phillips, Low Temperature Heat Capacity of Metals, CRC Crit. Rev. Solid State Sci., 1972, 2, p 467-553

    Article  ADS  Google Scholar 

  14. G.A.Alers, Use of Sound Velocity Measurements in Determining the Debye Temperature of Solids, Physical AcousticsPrinciples and Methods, Vol. III, Part B : Lattice Dynamics, W.P.Mason, Ed., Academic Press, New York, 1965, p 1-42

  15. G.A. Alers, Private Communication to D.L. Martin, Specific Heats Below 3°K of Pure Copper, Silver and Gold, and of Extremely Dilute Gold-Transition-Metal Alloys, Phys. Rev., 1968, 170, p 650-655

  16. P.H. Keesom and N. Pearlman, An Anomaly in the Low-Temperature Atomic Heat of Silver, Phys. Rev., 1952, 88, p 140-141

    Article  ADS  Google Scholar 

  17. J.D. Filby and D.L. Martin, The Electronic Specific Heat of Silver, Can. J. Phys., 1962, 40, p 791-794

    Article  ADS  Google Scholar 

  18. F.J. Du Chatenier and J. De Nobel, Heat Capacities of Some Dilute Alloys, Physica, 1962, 28, p 181-183

    Article  ADS  Google Scholar 

  19. F.J. Du Chatenier and J. De Nobel, Heat Capacities of Pure Copper and Silver and of Dilute Alloys of Cu, Ag, Zn., Mg and Al with Transition Metals of the First Row at Low Temperatures, Physica, 1966, 32, p 1097-1109

    Article  ADS  Google Scholar 

  20. B.A. Green, Jr, and H.V. Culbert, Low-Temperature Specific Heats of AgSn Alloys, Phys. Rev., 1965, 137, p A1168-A1171

    Article  ADS  Google Scholar 

  21. M. Dixon, F.E. Hoare, T.M. Holden, and D.E. Moody, The Low Temperature Specific Heats of Some Pure Metals (Cu, Ag, Pt, Al, Ni, Fe, Co), Proc. R. Soc. Lond. A, 1955, 285, p 561-580

    Article  ADS  Google Scholar 

  22. L.L. Isaacs, Low Temperature Specific Heat of Gold, Silver and Copper, J. Chem. Phys., 1965, 43, p 307-308

    Article  ADS  Google Scholar 

  23. D.L. Martin, Specific Heats of Copper, Silver and Gold Below 30°K, Phys. Rev., 1966, 141, p 576-582

    Article  ADS  Google Scholar 

  24. B.A. Green, Jr, and A.A. Valladares, Low-Temperature Specific Heats of AgAu Alloys, Phys. Rev., 1966, 142, p 379-383

    Article  ADS  Google Scholar 

  25. B.A. Green, Jr., Low-Temperature Specific Heats of Silver-Zinc Alloys. The Effect of Lattice Dilation, Phys. Rev., 1966, 144, p 528-533

    Article  ADS  Google Scholar 

  26. G. Ahlers, The Heat Capacity of Silver Below 26°K, J. Phys. Chem. Solids, 1967, 28, p 525-527

    Article  ADS  Google Scholar 

  27. H. Montgomery, G.P. Pells, and E.M. Gray, Low Temperature Specific Heats of α-Phase AgCd and AgPd Alloys, Proc. R. Soc. Lond. A, 1967, 301, p 261-284

    Article  ADS  Google Scholar 

  28. L.L. Isaacs, Private Communication 1967 to G.T. Furukawa, W.G. Saba, and M.L. Reilly, Critical Analysis of the Heat-Capacity Data of the Literature and Evaluation of Thermodynamic Properties of Copper, Silver and Gold from 0 to 300 K, Nat. Stand. Ref. Data Ser. Nat. Bur. Stand., NSRDS-NBS 18, 1968

  29. D.L. Martin, Specific Heats Below 3°K of Pure Copper, Silver and Gold, and of Extremely Dilute Gold-Transition-Metal Alloys, Phys. Rev., 1968, 170, p 650-655

    Article  ADS  Google Scholar 

  30. D.L. Martin, Specific Heats of Copper, Silver and Gold Below 30 K, Phys. Rev. B, 1973, 8, p 5357-5360

    Article  ADS  Google Scholar 

  31. T.B. Massalski and L.L. Isaacs, Low-Temperature Specific Heats of Alloys Based on the Noble Metals, Cu, Ag and Au : α-Phase Ag-Sn Alloys, Phys. Rev., 1965, 138, p A139-A143

    Article  ADS  Google Scholar 

  32. G.A. Sargent, L.L. Isaacs, and T.B. Massalski, Low Temperature Specific Heats of α-Phase Copper-Silver Alloys, Phys. Rev., 1966, 143, p 420-422

    Article  ADS  Google Scholar 

  33. D.L. Martin, The Specific Heats of Copper, Silver and Gold Below 300 K, Can. J. Phys., 1987, 65, p 1104-1110

    Article  ADS  Google Scholar 

  34. D.L. Martin, Tray Type Calorimeter for the 15-300 K Temperature Range : Copper as a Specific Heat Standard in This Range, Rev. Sci. Instrum., 1987, 58, p 639-646

    Article  ADS  Google Scholar 

  35. T.W. Richards and F.G. Jackson, The Specific Heat of the Elements at Low Temperatures, Z. Phys. Chem., 1910, 70, p 414-451

    Google Scholar 

  36. H.L. Bronson and A.J.C. Wilson, The Heat Capacities of Silver, Nickel, Zinc, Cadmium and Lead, from—80° to 120°C, Can J. Res. A, 1936, 14, p 181-193

    Article  Google Scholar 

  37. P.F. Meads, W.R. Forsythe, and W.F. Giauque, The Heat Capacities and Entropies of Silver and Lead from 15 to 300°K, J. Am. Chem. Soc., 1941, 63, p 1902-1905

    Article  Google Scholar 

  38. A. Eucken, K. Clusius, and H. Woitinek, Die Bildung einiger Metallhalogenide insbesondere des Bromsilbers vom Standpunkt des Nernst’schen Wärmesatzes, Z. Anorg. Allgem. Chem., 1931, 203, p 39-56

    Article  Google Scholar 

  39. E.H.P. Cordfunke, R.J.M. Konings, and R.R. Van Der Laan, Enthalpy Increments of Silver from 560 to 900 K, Thermochim. Acta, 1990, 157, p 315-319

    Article  Google Scholar 

  40. E.D. Eastman, A.M. Williams, and T.F. Young, The Specific Heats of Magnesium, Calcium, Zinc, Aluminium and Silver at High Temperatures, J. Am. Chem. Soc., 1924, 46, p 1178-1183

    Article  Google Scholar 

  41. S. Stølen and F. Grønvold, Critical Assessment of the Enthalpy of Fusion of Metals Used as Enthalpy Standards at Moderate to High Temperatures, Thermochim. Acta, 1999, 327, p 1-32

    Article  Google Scholar 

  42. P.H. Sommelet, Gibbs Energies, Entropies and Heats of Formation from Drop Calorimetry : The Silver-Lead System, U.S. Atomic Energy Commission Rept. UCRL-16303, 1965

  43. T.A.Corn, “The Thermodynamics of the Silver-Silicon System by Drop Calorimetry,” M.S. Thesis, University of California, Berkeley, 1967

  44. C.C. Person, Relation entre le Coefficient d’Élasticité des Métaux Leur Chaleur Latente de Fusion, Chaleur Latente du Cadmium et l’Argent, Comptes Rendus, 1848, 27, p 258-261

    Google Scholar 

  45. J. Pionchon, Recherches Calorimétriques sur les Chaleurs Spécifiques et les Changements d’Étataux Températures Élevées, Ann. Chim. Phys., 1887, 11, p 33-111

    Google Scholar 

  46. F. Wüst, A. Meuthen, and R. Durrer, Die Temperatur-Wärmeinhaltskurven der Technischwichtigen Metalle, Forsch. Gebiete Ingenieurw., 1918, 204, p 1-63

    Google Scholar 

  47. S. Umino, On the Latent Heat of Fusion of Several Metals and Their Specific Heats at High Temperatures, Sci. Rept. Tôhuku Univ., 1926, 15, p 597-617

    Google Scholar 

  48. U. Cavallaro, Heat of Fusion of La, Ce, Pr and Al, Atti. Reale Accad. Italia Rend. Classe Sci. Fiz. Mat. Nat., 1943, 4-5, p 520-526

    Google Scholar 

  49. F.E. Wittig, Über eine Methode zur Direckten Messung von Schmelzwärme bei Höherer Temperaturen, Z. Elektrochem., 1950, 54, p 288-294

    Google Scholar 

  50. W. Oelsen, Zur Thermodynamischen Analyse, Arch. Eisenhuttenw., 1957, 28, p 1-6

    Google Scholar 

  51. D.A. Speros and R.L. Woodhouse, Realization of Quantitative Differential Thermal Analysis. 1. Heats and Rates of Solid-Liquid Transitions, J. Phys. Chem., 1963, 67, p 2164-2168

    Article  Google Scholar 

  52. R.N. Dokken and J.F. Elliott, Calorimetry at 1100° to 1200°C : The Copper-Nickel, Copper-Silver, Copper-Cobalt Systems, Trans. Met. Soc. AIME, 1965, 233, p 1351-1358

    Google Scholar 

  53. O. Vollmer and R. Kohlhaas, Die Atom- und Schmelzwärme von Kupfer, Silber und Gold, Z. Metallkde, 1968, 59, p 273-277

    Google Scholar 

  54. J.F. Callanan, Fusion Temperatures and Enthalpies of High-Temperature Materials Determined by Differential Thermal Methods, J. Therm. Anal., 1995, 45, p 359-368

    Article  Google Scholar 

  55. K.K. Kelley, Contributions to the Data on Theoretical Metallurgy. V. Heats of Fusion of Inorganic Substances, U.S. Bur. Mines Bull., 1936, 393, p 166

    Google Scholar 

  56. M.W. Nathan and M. Leider, Studies of Bismuth Alloys. I. Liquidus Curves of the Bismuth-Copper, Bismuth-Silver and Bismuth-Gold Systems, J. Phys. Chem., 1962, 66, p 2012-2015

    Article  Google Scholar 

  57. N.A.Nedumov, Metals and Alloys, Differential Thermal Analysis, R.C. Mackenzie, Ed., Academic Press, New York, London, 1970, p 161-191

  58. E.V. Orlik and G.I. Petrunin, Apparatus for the Determination of the Enthalpy of Fusion and Thermal Parameters of Compounds in the Temperature Range 800-2000 K, Vest. Mosk. Univ., Ser. 3, Fiz. Astron., 1981, 22(4), p 69-71

    Google Scholar 

  59. C. Cagran, B. Wilthan, and G. Pottlacher, Enthalpy, Heat of Fusion and Specific Electrical Resistivity of Pure Silver, Pure Copper and the Binary Ag-28Cu Alloy, Thermochim. Acta, 2006, 445, p 104-110

    Article  Google Scholar 

  60. R.C. Feber, C.C. Herrick, and L.S. Levinson, A Calorimetric Study of Liquid Silver and Liquid Tin, J. Chem. Thermodynamics, 1969, 1, p 169-175

    Article  Google Scholar 

  61. P.C. Sundareswaran, R.L. Montgomery, and J.L. Margrave, Thermodynamic Properties by Levitation Calorimetry. VI. High Temperature Heat Content of Liquid Silver, High Temp. Sci., 1984, 18, p 125-128

    Google Scholar 

  62. G. Wilde, Private Communication to A. Dinsdale 1998

  63. A. Kraminda, Yu. Ralchenko, J. Reader and the NIST ASD Team, 2013, NIST Atomic Spectra Database (ver. 5.1), http://physics.nist.gov/asd

  64. H.G. Kolsky, R.M. Gilmer, and P.W. Gilles, The Thermodynamic Properties of 54 Elements Considered as Ideal Monatomic Gases. U.S. Atomic Energy Commission Rept. LA 2110, 1957

  65. P.J. Mohr, B.N. Taylor, and D.B. Newell, CODATA Recommendations of the Fundamental Physical Constants: 2010, Rev. Mod. Phys., 2012, 84, p 1527-1605

    Article  ADS  Google Scholar 

  66. P.J. Mohr, B.N. Taylor, and D.B. Newell, CODATA Recommendations of the Fundamental Physical Constants: 2010, J. Phys. Chem. Ref. Data, 2012, 41, p 043109-1-043109-84

    Article  ADS  Google Scholar 

  67. M.H. Rand, Private Communication 2009

  68. V. Beutel, H.-G. Krämer, G.L. Bhale, M. Kuhn, K. Weyers, and W. Demtröder, High-Resolution Isotope Selective Laser Spectroscopy of Ag2 Molecules, J. Chem. Phys., 1993, 98, p 2699-2708

    Article  ADS  Google Scholar 

  69. R.C. Paule and J. Mandel, Analysis of Interlaboratory Measurements on the vapor Pressure of Cadmium and Silver (Certification of Standard Reference Materials 746 and 748), Natl. Bur. Stand. Spec. Publ. 260-21, 1971

  70. R.C. Paule and J. Mandel, Analysis of Interlaboratory Measurements on the Vapor Pressure of Cadmium and Silver, Pure Appl. Chem., 1972, 31, p 395-431

    Google Scholar 

  71. D.M. Jackson and D.E. Hudson, An Ion Source for Molecular Effusion Studies, U.S. Atomic Energy Agency Rept. ISC-1175, 1959

  72. B. Ilschner and J. Humbert, Zur Verdamptung Flussiger Metalle unter Verminderten Druck, Z. Metallkde, 1960, 51, p 626-632

    Google Scholar 

  73. E.Z. Vintaiken, P.L. Gruzin, and S.N. Fedorov, The Use of Isotopes in the Study of Atomic Mobility and Interatomic Interaction in Metals, Metallurgiya Metallovedenie Akad.Nauk SSSR, 1958, p 339-342 (Metallurgy Metallogaphy, NP-tr-448, 1960, 278-284)

  74. G.B. Fedorov, Determination of Heats of Sublimation of Silver, Nickel and Zirconium by the Method of Radioactive Indicators, Metallurgiya I Metallovedenie Chistykh Metallov (Metallurgy and Metallography of Pure Metals), V.S. Emel’yanov and A.I. Evstyukhin, Ed., Vol 2, 1960, p 141-147

  75. G. De Maria and L. Malaspina, A New Knudsen Cell Assembly for a High-Temperature Mass Spectrometer, SciTec, 1961, 5, p 145-151

    Google Scholar 

  76. D.F. Avery, J. Cuthbert, N.J.D. Prosser, and C. Silk, High Temperature Vaporization Studies by Mass Spectrometry. I. The Coinage Metals—A Discussion of the Method and Errors, J. Sci. Instrum., 1966, 43, p 436-442

    Article  ADS  Google Scholar 

  77. R.H. Moore, D. Robinson, and B.B. Argent, The Use of High Resolution Mass Spectrometry in the Measurement of Thermodynamic Properties of Metallic Systems, J. Phys. E, 1975, 8, p 641-648

    Article  ADS  Google Scholar 

  78. J. Golonka, J. Botor, and M. Dulat, Study of Cu-Ag Liquid Solutions by Combined Effusion Vaporization and Mass Spectrometry Sensing, Met. Technol. (Lond.), 1979, 6, p 267-272

    Article  Google Scholar 

  79. H. Von Wartenberg, Einige Dampfdichtebestimmungen bei Sehr Hohen Temperaturen, Z. Anorg. Chem., 1908, 56, p 320-336

    Article  Google Scholar 

  80. C.J. Hansen, Über Verdampfung und Sublimation, Insbesondere Hochmolekularer Kohlenstoffverbindungen, bei Minimaltemperaturen im Vakuum, Chem. Ber., 1909, 42, p 210-214

    Article  Google Scholar 

  81. H.C. Greenwood, An Approximate Determination of the Boiling Point of Metals, Proc. R. Soc. Lond. A, 1908, 82, p 396-408

    Article  ADS  Google Scholar 

  82. H.C. Greenwood, The Influence of Pressure on the Boiling Points of Metals, Proc. R. Soc. Lond. A, 1910, 83, p 483-491

    Article  ADS  Google Scholar 

  83. W. Rosenhain and D. Ewen, Intercrystalline Cohesion in Metals with an Appendix on the Formation of Twinned Crystals in Silver, J. Inst. Met., 1912, 8, p 149-185

    Google Scholar 

  84. H. Wartenberg, Über Metalldampfdrucke, Z. Elektrochem., 1913, 19, p 482-489

    Google Scholar 

  85. O. Ruff and B. Bergdahl, Arbeiten im Gebiet Hoher Temperaturen. XII. Die Messung von Dampfspannungen bei sehr Hohen Temperaturen nebst Einigen Beobachtungen über die Löslichkeit von Kohlenstoff in Metallen, Z. Anorg. Allgem. Chem., 1919, 106, p 76-94

    Article  Google Scholar 

  86. H.A. Jones, I. Langmuir, and G.M.J. Mackay, The Rates of Evaporation and the Vapour Pressures of Tungsten, Molybdenum, Platinum, Nickel, Iron, Copper and Silver, Phys. Rev., 1927, 30, p 201-214

    Article  ADS  Google Scholar 

  87. P. Harteck, Dampfdruckmessungen von Ag, Au, Cu, Pb, Ga, Sn und Berechnung der Chemischen Konstanten, Z. Phys. Chem., 1928, 134, p 1-20

    Google Scholar 

  88. A. Farkas, Über die Bildung von Gasformigem Goldhydrid, Z. Phys. Chem. B, 1929, 5, p 467-475

    Google Scholar 

  89. J. Fischer, Über die Dampfdrucke Hochsiedender Metalle. I. Bestimmungen nach der Siedemethode, Z. Anorg. Allgem. Chem., 1934, 219, p 1-16

    Article  Google Scholar 

  90. J. Fischer, Über die Dampfdrucke Hochsiedender Metalle II, Bestimmungen nach der Ruffschen Federwaagenmethode, Z. Anorg. Allgem. Chem., 1934, 219, p 367-375

    Article  Google Scholar 

  91. E. Baur and R. Brunner, Dampfdruckmessungen an Hochsiedenden Metallen, Helv. Chim. Acta, 1934, 17, p 958-969

    Article  Google Scholar 

  92. H.M. Schadel, Jr, and C.E. Birchenall, The Vapor Pressure of Silver, J. Metals Trans. AIME, 1950, 188, p 1134-1138

    Google Scholar 

  93. A.H. Daane, The Vapor Pressures of Lanthanum and Praseodymium, U.S. Atomic Energy Commission Doc. 3209 (ISC-121), 1950

  94. A.P. Lyubimov and A.A. Granovskaya, Measurement of Low Vapour Pressures at High Temperatures III, Measurement of the Vapour Pressure of Silver with a Radioactive Isotope, Zh. Fiz. Khim., 1953, 27, p 473-475

    Google Scholar 

  95. R.K. Edwards and J.H. Downing, Mechanisms of Permeation of Silver, Copper and Mercury Gases of Solid Graphite Walls, J. Phys. Chem., 1955, 59, p 1079-1083

    Article  Google Scholar 

  96. An.N. Nesmeyov, N.F. Lebedev, V.I. Lozgachev, and E.G. Chudinov, Isotope Exchange Method for Measuring the Velocity of Evaporation and the Coefficient of Diffusion of Solid Metals, Sessiya Akademii Nauk SSSR po Mirnomu Ispol’zovaniya Atomoi Energii (Session of the Academy of Sciences of the USSR on the Peaceful Uses of Atomic Energy), 1-5 July 1955, Zasedanie Otdeleniya Tekhnickeskikh Nauk (Technical Sciences Division Meeting), Izd. Akad. Nauk SSSR, Moscow, 1955, p 79-100

  97. O. Knacke and R. Schmolke, Über die Verdampfung sehr Dünner Kupfer- und Silberschichten, Z. Metallkde, 1956, 47, p 22-24

    Google Scholar 

  98. P. Grieveson, G.W. Hooper, and C.B. Alcock, The Vapor Pressure of the Liquid Metals Copper, Silver and Gold, The Physical Chemistry of Process Metallurgy, Part 1, G.R.St. Pierre, Ed., Interscience, New York, 1961, p 341-352

  99. G.P. Kovtun, A.A. Kruglykh, and V.S. Pavlov, Determination of the Vapour Pressure of Metals from the Rate of Vaporization, Ukr. Fiz. Zh., 1961, 6, p 386-389

    Google Scholar 

  100. J. Kučera, L. Dvořák, and Z. Kudělásek, Tensimetric Measurement of Thermodynamic Functions of Silver in Ag-Cu Alloy by Method of Isotope Exchange, Čs. Čas. Fys., 1961, 11, p 277-284

    Google Scholar 

  101. G.B. Fedorov and E.A. Smirnov, Thermodynamic Properties of Zirconium and Its Alloys with Tin, Thermodynamics of Nuclear Materials, Proceedings of the Symposium, IAEA, Vienna, 21-25 May 1962, (STI/PUB/58), IAEA, Vienna, 1962, p 285-306

  102. C.N. Cochran and L.M. Foster, Vapor Pressure of Gallium, Stability of Gallium Suboxide Vapor and Equilibria of Some Reactions Producing Gallium Suboxide Vapor, J. Electrochem. Soc., 1962, 109, p 144-148

    Article  Google Scholar 

  103. A.D. Kirshenbaum and J.A. Cahill, The Density of Liquid Tin From Its Melting Point to Its Normal Boiling Point and an Estimate of Its Critical Constants, Trans. ASM, 1962, 55, p 844-847

    Google Scholar 

  104. A.D. Kirshenbaum and J.A. Cahill, The Direct Determination of the Boiling Point of Tin, J. Inorg. Nucl. Chem., 1963, 25, p 232-234

    Article  Google Scholar 

  105. P.G. Fox and R.J. Esdale, The Influence of Oxygen on the Vapour Pressure of Solid Silver, Acta Met., 1963, 11, p 1363-1365

    Article  Google Scholar 

  106. J.F. Nachman, C.E. Lundin, and A.S. Yamamoto, A Fundamental Investigation of the Alloying Behavior of the Rare Earth and Related Metals, Aeronautical Research Laboratories, Office of Aerospace Research, U.S. Air Force, Wright-Patterson Air Force Base, Ohio, Rept. ARL 63-15, 1963

  107. J. Tomáš, Apparatus for Measuring Metal Tension and Thermodynamic Activities at High Temperatures, Sb. Věd. Pr. Vys. Šk. Báňské Ostravě, 1964, 10, p 319-327

    Google Scholar 

  108. K.M. Myles, Thermodynamic Properties of Solid Palladium-Silver Alloys, Acta Met., 1965, 13, p 109-113

    Article  Google Scholar 

  109. R.D. Freeman, Molecular Flow and the Effusion Process in the Measurement of Vapor Pressures, Air Force Materials Laboratory, Research and Technology Division, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio, Tech.Doc., Rept. ASD TDR 63-754, Part II. Additional Data and Details of Equipment, 1965

  110. L.A. Haas and C.L. Schultz, A Torsion Effusion Apparatus for Vapor Pressure Measurements: Vapor Pressure of Silver from 1200° to 1500°K, U.S. Bur. Mines Rep. Invest. 6682, 1965

  111. I. Ansara and E. Bonnier, Tension de Vapeur du Beryllium et de l’Argent Liquide, Conference Internationale Sur la Metallurgie du Beryllium, Grenoble, France, 1965, Presses Universitaires de France, Paris, 1966, p 17-18

  112. H. Matern, Investigation of the Evaporation of Some Metals and Alloys, Cand. Sci. (Chem.), Diss., Moscow State University, 1968

  113. G.I. Haury, The Vapor Pressure of Standard Samples of Gold and Silver, Air Force Materials Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio, Tech. Rept. AFML-TR-68-368, 1969

  114. R.J.L. Andon, J.F. Martin, and K.C. Mills, Thermodynamic Properties of Gold Telluride, J. Chem. Soc. (A), 1971, p 1788-1791

  115. G.B. Fedorov, P.I. Kalinin, E.A. Smirnov, and K.V. Ivanov, Effect of Degree of Exhaustion and Composition of Residual Gases in Working Chamber on Vapour Pressure of Metals and Alloys, Zh. Fiz. Khim., 1971, 45, p 1218-1219 (Russ. J. Phys. Chem., 1971, 45, p 683-685)

  116. H.E.J. Schins, R.W.M. Van Wijk, and B. Dorpema, The Heat-Pipe Boiling-Point Method and the Vapor Pressure of Twelve Metallic Elements in the Range 10-104 Torr, Z. Metallkde, 1971, 62, p 330-336

    Google Scholar 

  117. N.A. Vatolin, A.I. Timofeev, and E.L. Dubinin, Vapour Pressure of Liquid Palladium Alloys, Zh. Fiz. Khim., 1971, 45, p 2027-2029 (Russ. J. Phys. Chem., 1971, 45, p 1149-1150)

  118. G.M. Fedichkin, Vapor Pressure of Solid Silver, Izv. Vyssh. Ucheb. Zaved. Tsvet. Metall., 1972, 5, p 131-133

    Google Scholar 

  119. J.G. Edwards, A Dynamic Knudsen-Effusion-Torsion Balance, J. Vac. Sci. Technol., 1974, 11, p 400-403

    Article  ADS  Google Scholar 

  120. B.M. Novoselov, E.L. Dubinin, and A.I. Timofeev, Measurements of Vapour Pressure of Pure Metals at High Temperatures Using the Effusion-Torsion Method, Izv. Vyssh. Ucheb. Zaved. Tsvetn. Metall., 1978, 6, p 41-47

    Google Scholar 

  121. S.E. Vaisburd, I.Sh. Tsemekhman, A.V. Taberko, and Ya.A. Karasev, Vapour Pressure Over Molten Metals : Iron, Cobalt, Nickel, Palladium, Copper, Silver, Gold, Tin and Lead, Protessy Tsvetnoi Metallurgii Pri Nizkikh Davleniiakh, A.I. Manokhin, G.N. Zviadadze, and V.G. Finikov, Ed., Izd.Nauka, Moscow, 1983, p 120-128

  122. A.V. Taberko and S.E. Vaisburd, The Vapour Pressure over Silver Melts—Copper-Silver, Protsessy Tsvetnoi Metallurgii Pri Nizkikh Davleniiakh, A.I. Manokhin, G.N. Zviadadze, and V.G. Finikov, Ed., Izd.Nauka, Moscow, 1983, p 128-131

  123. V.K. Panday and A.K. Ganguly, Measurement of Monatomic Vapor Concentrations of Some Elements by Atomic Absorption Spectrometry: Cu, Ag, Au, Mn and Al, Appl. Spectrosc., 1985, 39, p 526-531

    Article  ADS  Google Scholar 

  124. C.L. McCabe and C.E. Birchenall, Vapor Pressure of Silver, Trans. AIME, 1953, 197, p 707-709 (J. Metals, 1953, 5, p 707-709)

  125. C.L. McCabe, H.M. Schadel Jr., and C.E. Birchenall, Vapor Pressure of Silver Over Silver-Gold Solid Solutions, Trans. AIME, 1953, 197, p 709-711 (J. Metals, 1953, 5, p 709-711)

  126. Yu.V. Kornev and E.Z. Vintaikin, The Sublimation of Silver Studied with Radioactive Tracers and a Mass Spectrometer, Dokl. Akad. Nauk SSSR, 1956, 107, p 661-663 (Sov.Phys.Doklady 1956, 1, p 203-205)

  127. An.N. Nesmeyanov, L.A. Smakhtin, and V.I. Lebedev, Measurement of the Vapour Pressures of the Solid Solutions Au-Ag and Ag-Cu, Dokl. Akad. Nauk SSSR, 1957, 112, p 700-702 (Proc. Acad. Sci. USSRPhys. Chem. Sect., 1957, 112, p 101-104)

  128. An.N. Nesmeyanov, L.A. Smakhtin, D.Ya. Choporov, and V.I. Lebedev, Investigation into the Thermodynamics of Solid Solutions of Gold, Silver and Copper. I, Zh. Fiz. Khim., 1959, 33, p 342-348

    Google Scholar 

  129. P.L. Woolf, G.R. Zellars, E. Foerster, and J.P.Morris, Vapor Pressures of Liquid Manganese and Liquid Silver, U.S. Bur. Mines Rept. Invest. 5634, 1960

  130. M.B. Panish, Vapor Pressure of Silver, J. Chem. Eng. Data, 1961, 6, p 592-594

    Article  Google Scholar 

  131. A. Krupkowski and J. Golonka, Vapour Pressures of Liquid Copper and Silver, Bull. Acad. Polon. Sci. Ser. Sci. Tech., 1964, 12, p 69-74

    Google Scholar 

  132. P.D. Zavitsanos, Vapor Pressure Measurements at High Temperatures Using a Recording Microbalance, Rev. Sci. Instrum., 1964, 35, p 1061-1063

    Article  ADS  Google Scholar 

  133. T.J. O’Keefe, A Thermodynamic Study of Dilute Silicon Alloys of Silver, University of Missouri, Diss., 1965

    Google Scholar 

  134. A.J. Boyer and T.R. Meadowcroft, A Measured Effect of Surface Diffusion in a Knudsen Cell, Trans. Met. Soc. AIME, 1965, 233, p 388-391

    Google Scholar 

  135. J. Bohdansky and H.E.J. Schins, New Method for Vapor-Pressure Measurements at High Temperature and High Pressure, J. Appl. Phys., 1965, 36, p 3683-3684

    Article  ADS  Google Scholar 

  136. J. Bohdansky and H.E.J. Schins, Vapor Pressure of Different Metals in the Pressure Range of 50 to 4000 Torr, J. Phys. Chem., 1967, 71, p 215-217

    Article  Google Scholar 

  137. S.K. Tarby and V.S. Robinson, III, The Vapor Pressure of Liquid Silver, Trans. Met. Soc. AIME, 1968, 242, p 719-721

    Google Scholar 

  138. J. Vřeštál and J. Kučera, Vapor Pressure Measurement of Metals at High Temperatures, Čs. Čas. Fys. A, 1969, 19, p 660-663

    Google Scholar 

  139. P.C. Marx, E.T. Chang, and N.A. Gocken, Vapor Pressure of Liquid Gold and Silver, High Temp. Sci., 1970, 2, p 140-145

    Google Scholar 

  140. F.M. Wachi, D.E. Gilmartin, and D.A. Roux, High Temperature Mass Spectrometry, Vol. II. Knudsen Cell Assembly for Herzog-Mattauch Type Mass Spectrometer, The Aerospace Corp., El Segundo, California, Space Missiles Systems Organization, Air Force Systems Command, Los Angeles Air Force Station, California, Air Force Rept. No. SAMSO-TR-71-231, 1971

  141. A.P. Pomerantsev, Investigation of Evaporation of Binary Alloys on the Basis of Copper, Silver and Manganese using Radionuclides, Cand. Sci. (Chem.) Diss., Moscow State University, 1980

  142. V.M. Amonenko, V.E. Ivanov, G.P. Kovtun, V.S. Pavlov, and A.A. Kruglykh, Experimental Equipment and Methods for High Temperature Measurements, Eksp. Tekh. Metody Vysokotemp Izmer Akad Sci. Nauk SSSR, 1966, p 85-90

  143. Q. Ran, R.W. Schmude, Jr., K.A. Gingerich, D.W. Wilhite, and J.E. Kingcade, Jr., Dissociation Energy and Enthalpy of Formation of Gaseous Silver Dimer, J. Phys. Chem., 1993, 97, p 8535-8540

    Article  Google Scholar 

  144. K. Franzreb, A. Wucher, and H. Oechsner, Absolute Cross Sections for Electron Impact Ionization of Ag2, Z. Phys. D, 1991, 19, p 77-79

    Article  ADS  Google Scholar 

  145. J. Drowart and R.E. Honig, Mass Spectrometric Study of Copper, Silver and Gold, Chem. Phys., 1956, 25, p 581-582

    ADS  Google Scholar 

  146. J. Drowart and R.E. Honig, A Mass Spectrometric Method for the Determination of Dissociation Energies of Diatomic Molecules, J. Phys. Chem., 1957, 61, p 980-985

    Article  Google Scholar 

  147. P. Schissel, Dissociation Energies of Cu2, Ag2 and Au2, J. Chem. Phys., 1957, 26, p 1276-1280

    Article  ADS  Google Scholar 

  148. M. Ackerman, F.E. Stafford, and J. Drowart, Mass Spectrometric Determination of the Dissociation Energies of the Molecules AgAu, AgCu and AuCu, J. Chem. Phys., 1960, 33, p 1784-1789

    Article  ADS  Google Scholar 

  149. K. Hilpert and K.A. Gingerich, Atomization Enthalpies of the Molecules Cu3, Ag3 and Au3, Ber. Bunsengen. Phys. Chem., 1980, 84, p 739-745

    Article  Google Scholar 

  150. J.E. Kingcade Jr., “Thermodynamic Investigation of Small Homonuclear and Heteronuclear Molecules Containing Silicon and Germanium (Knudsen Effusion, Metal Clusters)” Ph.D. Thesis, Texas A & M University, College Station, Texas, 1983

  151. D.W. Wilhite, “Investigation of High Temperature Gaseous Species by Knudsen Cell Mass Spectrometry above the Condensed Systems: Cu-Y-Ru-C, Ag-Y-Ru-C and Au-Y-Ru-C,” Masters Thesis, Texas A & M University, College Station, Texas, 1988

  152. W. Nerst, Der Energieinhalt Fester Stoffe, Ann. Phys., 1911, 341, p 395-439

    Article  Google Scholar 

  153. H. Barschall, Über Spezifische Wärmen fester Stoffe bei Tiefen Temperaturen, Z. Elektrochem., 1911, 17, p 341-345

    Google Scholar 

  154. J.N. Brönsted, Untersuchungen über die Spezifische Wärme. I, Z. Elektrochem., 1912, 18, p 714-717

    Google Scholar 

  155. E.H. Griffiths and E. Griffiths, The Capacity for Heat of Metals at Different Temperatures, Proc. R. Soc. Lond. A, 1913, 88, p 549-560

    Article  ADS  Google Scholar 

  156. E.H. Griffiths and E. Griffiths, IV, The Capacity for Heats of Metals at Different Temperatures, Being an Account of Experiments Performed in the Research Laboratory of the University College of South Wales and Monmouthshire, Phil. Trans. R. Soc. A, 1913, 213, p 119-185

    Article  ADS  Google Scholar 

  157. E.H. Griffiths and E. Griffiths, The Capacity for Heat of Metals at Low Temperatures, Phil. Trans. R. Soc. A, 1914, 214, p 319-357

    Article  ADS  Google Scholar 

  158. W.H. Keesom and J.A. Kok, Measurements of the Specific Heats of Silver from 1.35 to 20.3°K, Proc. Acad. Sci. Amsterdam, 1932, 35, p 301-306

    Google Scholar 

  159. W.H. Keesom and J.A. Kok, On the Specific Heats of Zinc and Silver at Liquid Helium Temperatures, Physica, 1934, 1, p 770-778

    Article  ADS  Google Scholar 

  160. H. Moser, Messung der Wahren Spezifischen Wärmen von Silber, Nickel, β-Messing, Quarzkristall und Quarzglas zwischen + 50 und 700°C nach einer Verfeinerten Methode, Physik. Z., 1936, 37, p 737-756

    Google Scholar 

  161. A. Mustajoki, Messungen der Wahren Specifischen Wärme der KCl-KBr-Mischkristalle im Temperaturbereich 50-450°C, Suomalaisen Tiedeakat. Toimituksia, Ann. Acad. Sci. Fennicae, 1951, 98, p 1-45

    Google Scholar 

  162. V.S. Lyashenko, Energy of Formation and Phase Transitions of the Alloys in the Al-Zn System, Izv. Akad. Nauk SSSR Otd. Khim Nauk, 1951, 3, p 242-254

    Google Scholar 

  163. C.P. Butler and E.C.Y. Inn, A Radiometric Method for Determining Specific Heat at Elevated Temperatures, U.S. Naval Radiological Defence Lab., Tech.Rept. USNRDL-TR-235, 1958

  164. W.A. Tilden, The Specific Heats of Metals and the Relation of Specific Heat to Atomic Weight. Part II, Proc. R. Soc. Lond., 1902, 71, p 220-221

    Article  Google Scholar 

  165. W.A. Tilden, The Specific Heats of Metals and the Relation of Specific Heat to Atomic Weight. Part II, Phil. Trans. R. Soc. A, 1903, 201, p 37-43

    Article  ADS  Google Scholar 

  166. A. Magnus, Über die Bestimmung Spezifischer Wärmen, Ann. Phys., 1910, 336, p 597-608

    Article  Google Scholar 

  167. H. Schimpff, Über die Wärmekapazität von Metallen und Metallverbindungen, Z. Phys. Chem., 1910, 71, p 257-300

    Google Scholar 

  168. P. Schübel, Metallographische Mitteilungen aus dem Institut für Physikalische Chemie der Universität Göttingen. LXXXVII. Über die Wärmekapazität von Metallen und Metallverbindungen Zwischen 18-600º, Z. Anorg. Chem., 1914, 87, p 81-119

    Article  Google Scholar 

  169. P. Weiss, A. Piccard, and A. Carrard, Calorimetrie des Substances Ferromagnétiques, Arch. Sci. Phys. Nat., 1917, 43, p 113-130

    Google Scholar 

  170. A. Magnus and A. Hodler, Messungen der Spezifischen Wärme des Silbers und des Diamanten im Gebiete Hoher Temperaturen, Ann. Phys., 1926, 385, p 808-822

    Article  Google Scholar 

  171. W.A. Roth and W. Bertram, Messung der Spezifischen Wärmen von Metallurgisch Wichtigen Stoffen in einen Grösseren Temperaturintervall mit Hilfe von Zwei Neun Calorimetertypen, Z. Elektrochem., 1929, 35, p 297-308

    Google Scholar 

  172. F.M. Jaeger, E. Rosenbohm, and J.A. Bottema, The Exact Measurement of the Specific Heats of Solid Substances at High Temperatures VI, Metals in Stabilized and Non-stabilized Condition: Platinum and Silver, Proc. R. Soc. Sci. Amsterdam, 1932, 35, p 763-771

    Google Scholar 

  173. F.M. Jaeger, E. Rosenbohm, and J.A. Bottema, La Détermination Exacte des Chaleurs Spécifiques à des Températures Élevées. Etude Systématique des Causes d’Erreurs Expérimentales se Présentant dans l’Emploi du Calorimetre Métallique et dans la Mesure des Chaleurs Spécifiques des Métaux Préalablement Travaillés, Rec. Trav. Chim. Pay Bas, 1933, 52, p 61-84

    Article  Google Scholar 

  174. F.M. Jaeger, E. Rosenbohm, and W.A. Veenstra, The Exact Measurement of Specific Heats of Fused and Solidified Silver Under Different Circumstances, Proc. R. Soc. Sci. Am sterdam, 1933, 36, p 291-298

    Google Scholar 

  175. H.L. Bronson, E.W. Hewson, and A.J.C. Wilson, The Heat Capacity of Silver and Nickel Between 100° and 500°C, Can. J. Res. A, 1936, 14, p 194-199

    Article  Google Scholar 

  176. F.E. Wittig and G. Böhm, Ein Mischungskalorimeter zur Messung der Enthalpie Metallischer Mischphasen Zwischen 25 und 1000°, Z. Metallkde, 1956, 47, p 699-704

    Google Scholar 

  177. A.G. Dyunin, V.M. Lazarev, A.I. Maier, and A.F. Vorobev, High-Temperature Differential Thermally Conducting Calorimeter for Measuring the Enthalpies of Processes in Melts, Zh. Fiz. Khim., 1983, 57, p 2095-2098 (Russ. J. Phys. Chem., 1983, 57, p 1274-1276)

Download references

Acknowledgment

The author is indebted to Malcolm Rand for calculating the thermodynamic properties of the diatomic gas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Arblaster.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 980 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arblaster, J.W. Thermodynamic Properties of Silver. J. Phase Equilib. Diffus. 36, 573–591 (2015). https://doi.org/10.1007/s11669-015-0411-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-015-0411-5

Keywords

Navigation