Skip to main content

Advertisement

Log in

Effects of Annealing Treatment on Mechanical and Damping Properties of ZK60 Magnesium Alloy Sheets

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Effects of annealing treatment on microstructure, mechanical and damping properties of as-rolled ZK60 magnesium alloy sheets were examined and analyzed. The as-rolled alloy annealed at 340 °C for 1 h undergoes static recrystallization and exhibits the best combination of mechanical properties, with UTS of 333 MPa, YS of 268 MPa and El of 19%. With the strain amplitude below 4 × 10–4, the damping mechanism of the as-studied alloys can be explained by the Granato–Lüker (G–L) theory. With the strain amplitude higher than 4 × 10–4, the occurrence of micro-yield phenomenon and dislocation multiplication make the damping behavior of the alloy no longer explainable by G–L theory. The growth in damping becomes faster for all the alloys when the strain amplitude exceeds 4 × 10–4, and the alloy annealed at 340 °C for 1 h exhibits the highest damping capacity with the strain amplitude higher than 5 × 10–4 as a result of the activation of more non-basal slip systems, which will consume more elastic vibration energy and thus improve the damping capacity of the alloy. This provides a theoretical basis for the development of high-strength and high-damping magnesium alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. A. Tehranchi, B. Yin, and W.A. Curtin, Solute Strengthening of Basal Slip in Mg Alloys, Acta Mater., 2018, 151, p 56–66.

    Article  CAS  Google Scholar 

  2. D. Zhao, X.H. Chen, J.L. Ye, T. Chen, Y. Dai, C.Q. Liu, Z. Luo, S.Q. Gao, J. Zhang, J.H. Yao, A. Atrens, A. Tang, and F.S. Pan, Simultaneously Improving Elastic Modulus and Damping Capacity of Extruded Mg-Gd-Y-Zn-Mn Alloy via Alloying with Si, J. Alloy. Comp., 2019, 810, p 151857.

    Article  CAS  Google Scholar 

  3. C.Y. Zhao, X.H. Chen, F.S. Pan, S.Y. Gao, D. Zhao, and X.F. Liu, Effect of Sn Content on Strain Hardening Behavior of As-Extruded Mg-Sn Alloys, Mater. Sci. Eng. A, 2018, 713, p 244–252.

    Article  CAS  Google Scholar 

  4. X.H. Chen, L.Z. Liu, J. Liu, and F.S. Pan, Microstructure, Electromagnetic Shielding Effectiveness and Mechanical Properties of Mg-Zn-Y-Zr Alloys, Mater. Des., 2015, 65, p 360–369.

    Article  Google Scholar 

  5. A. Ercetin, Application of the Hot Press Method to Produce New Mg alloys: Characterization, Mechanical Properties, and Effect of Al Addition, J. Mater. Eng. Perform., 2021, 30, p 4254–4262.

    Article  CAS  Google Scholar 

  6. F. Akkoyun and A. Ercetin, Automated Grain Counting for the Microstructure of Mg Alloys Using an Image Processing Method, J. Mater. Eng. Perform., 2022, 31, p 2870–2877.

    Article  CAS  Google Scholar 

  7. B.J. Wang, D.K. Xu, J.H. Dong, and W. Ke, Effect of Texture on Biodegradable Behavior of an As-Extruded Mg-3%Al-1%Zn Alloy in Phosphate Buffer Saline Medium, J. Mater. Sci. Technol., 2016, 32, p 646–652.

    Article  Google Scholar 

  8. S.Q. Yin, W.C. Duan, W.H. Liu, L. Wu, J.M. Yu, Z.L. Zhao, M. Liu, P. Wang, J.Z. Cui, and Z.Q. Zhang, Influence of Specific Second Phases on Corrosion Behaviors of Mg-Zn-Gd-Zr Alloys, Corros. Sci., 2020, 166, p 108419.

    Article  CAS  Google Scholar 

  9. Z.G. Ding, J.P. Pan, L.M. Peng, H.M. Zhang, B. Hu, J.P. Li, and A.A. Luo, The Effect of Microstructure on the Plastic Strain Localization and Fatigue Crack Initiation in Cast Mg-8Gd-3Y-05Zr Alloy, Mater. Sci. Eng. A, 2021, 801, p 140383.

    Article  CAS  Google Scholar 

  10. C.J. Kim, J.S. Oh, and C.H. Park, Modelling Vibration Transmission in the Mechanical and Control System of a Precision Machine, CIRP Ann-Manuf. Technol., 2014, 63, p 349–352.

    Article  Google Scholar 

  11. J.Z. Jiang, Z.G. Chen, W.M. Zhai, T. Zhang, and Y.F. Li, Vibration Characteristics of Railway Locomotive Induced by Gear Tooth Root Crack Fault Under Transient Conditions, Eng. Fail. Anal., 2019, 108, p 104285.

    Article  Google Scholar 

  12. J.F. Song, J. She, D.L. Chen, and F.S. Pan, Latest Research Advances on Magnesium and Magnesium Alloys Worldwide, J. Magnes. Alloy, 2020, 8, p 1–41.

    Article  CAS  Google Scholar 

  13. J.F. Wang, Z.S. Wu, S. Gao, R.P. Lu, D.Z. Qin, W.X. Yang, and F.S. Pan, Optimization of Mechanical and Damping Properties of Mg-0.6Zr Alloy by Different Extrusion Processing, J. Magnes. Alloy, 2015, 3, p 79–85.

    Article  CAS  Google Scholar 

  14. D.Q. Wan, H.B. Wang, S. Ye, Y.L. Hu, and L.L. Li, The Damping and Mechanical Properties of Magnesium Alloys Balanced by aluminum Addition, J. Alloy. Comp., 2019, 782, p 421–426.

    Article  CAS  Google Scholar 

  15. R.L. Niu, F.J. Yan, D.P. Duan, and X.M. Yang, Effect of Yttrium Addition on Microstructures, Damping Properties and Mechanical Properties of As-Cast Mg-Based Ternary Alloys, J. Alloy. Comp., 2019, 785, p 1270–1278.

    Article  CAS  Google Scholar 

  16. J.F. Wang, P.F. Song, S. Gao, X.F. Huang, Z.Z. Shi, and F.S. Pan, Effects of Zn on the Microstructure, Mechanical Properties, and Damping Capacity of Mg-Zn-Y-Zr Alloys, Mater. Sci. Eng. A, 2011, 528, p 5914–5920.

    Article  CAS  Google Scholar 

  17. P. Prakash, M.A. Wells, and B.W. Williams, Hot deformation of Cast AZ31 and AZ80 Magnesium Alloys—Influence of Al Content on Microstructure and Texture Development, J. Alloy. Comp., 2022, 897, 162876.

    Article  CAS  Google Scholar 

  18. J.F. Nie, Precipitation and Hardening in Magnesium Alloys, Metall. Mater. Trans. A, 2012, 43, p 3891–3939.

    Article  CAS  Google Scholar 

  19. J.W. Liang, Z.L. Lei, Y.B. Chen, W.J. Fu, S.B. Wu, X. Chen, and Y.C. Yang, Microstructure Evolution of Laser Powder Bed Fusion ZK60 Mg Alloy After Different Heat Treatment, J. Alloy. Comp., 2022, 898, p 163046.

    Article  CAS  Google Scholar 

  20. X.P. Zhou, H.G. Yan, J.H. Chen, W.J. Xia, B. Su, L. Yu, W.S. Huang, and M. Song, Effects of Low Temperature Aging Precipitates on Damping and Mechanical Properties of ZK60 Magnesium Alloy, J. Alloy. Comp., 2020, 819, p 152961.

    Article  CAS  Google Scholar 

  21. X.P. Zhou, H.G. Yan, J.H. Chen, W.J. Xia, B. Su, X.Y. Li, W.S. Huang, and M. Song, Effects of the β1′ Precipitates on Mechanical and Damping Properties of ZK60 Magnesium Alloy, Mater. Sci. Eng. A, 2021, 804, p 140730.

    Article  CAS  Google Scholar 

  22. D.Q. Wan, J.C. Wang, G.F. Wang, L. Lin, Z.G. Feng, and G.C. Yang, Precipitation and Responding Damping Behavior of Heat-Treated AZ31 Magnesium Alloy, Acta Metall Sin. (Engl. Lett.), 2009, 22, p 1–6.

    Article  CAS  Google Scholar 

  23. W. Xiao, X. Zhang, W.T. Geng, and G. Lu, Atomistic Study of Plastic Deformationin Mg-Al Alloys, Mater. Sci. Eng. A, 2013, 586, p 245–252.

    Article  CAS  Google Scholar 

  24. S.W. Xu, N. Matsumoto, S. Kamado, T. Honma, and Y. Kojima, Effect of Mg17Al12 Precipitates on the Microstructural Changes and Mechanical Properties of Hot Compressed AZ91 Magnesium Alloy, Mater. Sci. Eng. A, 2009, 523, p 47–52.

    Article  Google Scholar 

  25. W. Babington and G.F. Weissmann, A High Damping Magnesium Alloy for Missile Application (High Internal Damping Properties of Magnesium Alloy with Zirconium Addition), J. Environ. Sci., 1966, 9, p 19–27.

    Google Scholar 

  26. R.L. Niu, F.J. Yan, Y.S. Wang, D.P. Duan, and X.M. Yang, Effect of Zr Content on Damping Property of Mg-Zr Binary Alloys, Mater. Sci. Eng. A, 2018, 718, p 418–426.

    Article  CAS  Google Scholar 

  27. M. Bamberger and G. Dehm, Trends in the Development of New Mg Alloys, Ann. Rev. Mater. Res., 2008, 38, p 505–533.

    Article  CAS  Google Scholar 

  28. A. Ercetin, Ö. Özgün, and K. Aslantas, Investigation of Mechanical Properties of Mg5Sn-xZn Alloys Produced Through New Method in Powder Metallurgy, J. Test. Eval., 2021, 49, p 3506–3518.

    Article  CAS  Google Scholar 

  29. K. Kubota, M. Mabuchi, and K. Higashi, Review Processing and Mechanical Properties of Fine-Grained Magnesium Alloys, J. Mater. Sci., 1999, 34, p 2255–2262.

    Article  CAS  Google Scholar 

  30. X.W. Ren, Y.C. Huang, X.Y. Zhang, H. Li, and Y.X. Zhao, Influence of Shear Deformation During Asymmetric Rolling on the Microstructure, Texture, and Mechanical Properties of the AZ31B Magnesium Alloy Sheet, Mater. Sci. Eng. A, 2020, 800, p 140306.

    Article  Google Scholar 

  31. S.Q. Zhu, H.G. Yan, J.H. Chen, Y.Z. Wu, J.Z. Liu, and J. Tian, Effect of Twinning and Dynamic Recrystallization on the High Strain Rate Rolling Process, Scr. Mater., 2010, 63, p 985–988.

    Article  CAS  Google Scholar 

  32. S.Q. Zhu, H.G. Yan, J.H. Chen, Y.Z. Wu, B. Su, Y.G. Du, and X.Z. Liao, Feasibility of High Strain-Rate Rolling of a Magnesium Alloy Across a Wide Temperature Range, Scr. Mater., 2012, 67, p 404–407.

    Article  CAS  Google Scholar 

  33. L.Y. Sheng, B.N. Du, Z.Y. Hu, Y.X. Qiao, Z.P. Xiao, B.J. Wang, D.K. Xu, Y.F. Zheng, and T.F. Xi, Effects of Annealing Treatment on Microstructure and Tensile Behavior of the Mg-Zn-Y-Nd Alloy, J. Magnes. Alloy., 2020, 8, p 601–613.

    Article  CAS  Google Scholar 

  34. X.B. Gong, S.B. Kang, J.H. Cho, and S.Y. Li, Effect of Annealing on Microstructure and Mechanical Properties of ZK60 Magnesium alloy Sheets Processed by Twin-Roll Cast and Differential Speed Rolling, Mater. Charact., 2014, 97, p 183–188.

    Article  CAS  Google Scholar 

  35. F. Guo, R.S. Pei, L.Y. Jiang, D.F. Zhang, S. Korte-Kerzel, and T. Al-Samman, The Role of Recrystallization and Grain Growth in Optimizing the Sheet Texture of Magnesium Alloys with Calcium Addition During Annealing, J. Magnes. Alloy., 2020, 8, p 252–268.

    Article  CAS  Google Scholar 

  36. J. Koike, T. Kobayashi, T. Mukai, H. Suzuki, K. Maruyama, and K. Higashi, The Activity of Non-basal Slip Systems and Dynamic Recovery at Room Temperature in Fine-Grained AZ31B Magnesium Alloys, Acta Mater., 2003, 51, p 2055–2065.

    Article  CAS  Google Scholar 

  37. S.W. Lee and S.H. Park, Static Recrystallization Mechanism in Cold-Rolled Magnesium Alloy with Off-Basal Texture Based on Quasi in Situ EBSD Observations, J. Alloy. Comp., 2020, 844, p 156185.

    Article  CAS  Google Scholar 

  38. C. Chen, J.H. Chen, H.G. Yan, B. Su, M. Song, and S.Q. Zhu, Dynamic Precipitation, Microstructure and Mechanical Properties of Mg-5Zn-1Mn Alloy Sheets Prepared by High Strain-Rate Rolling, Mater. Des., 2016, 100, p 58–66.

    Article  CAS  Google Scholar 

  39. I.H. Kara and A. Incesu, Microstructural, Mechanical, and Tribological Properties of Mg-3Al-1Sn-1Nd-Mn Alloy, J. Mater. Eng. Perform., 2021, 30, p 1674–1682.

    Article  CAS  Google Scholar 

  40. A. Incesu and A. Gungor, Mechanical Properties and Biodegradability of Mg-Zn-Ca Alloys: Homogenization Heat Treatment and Hot Rolling, J. Mater. Sci. Mater. M, 2020, 31, p 1–12.

    Article  Google Scholar 

  41. X. Gao and J.F. Nie, Characterization of Strengthening Precipitate Phases in a Mg-Zn Alloy, Scr. Mater., 2007, 56, p 645–648.

    Article  CAS  Google Scholar 

  42. Q. Wu, H.G. Yan, J.H. Chen, W.J. Xia, M. Song, and B. Su, Dynamic Precipitation Behavior Before Dynamic Recrystallization in a Mg-Zn-Mn Alloy During Hot Compression, Mater. Charact., 2019, 153, p 14–23.

    Article  CAS  Google Scholar 

  43. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen and A.D. Rollett, Current Issues in Recrystallization: a Review, Mater. Sci. Eng. A, 1997, 238, p 219–274.

    Article  Google Scholar 

  44. H.J. Mcqueen and C.A.C. Imbert, Dynamic Recrystallization: Plasticity Enhancing Structural Development, J. Alloy. Comp., 2004, 378, p 35–43.

    Article  CAS  Google Scholar 

  45. M.T. Pérez-Prado, J.A. del Valle and O.A. Ruano, Achieving High Strength in Commercial Mg Cast Alloys Through Large Strain Rolling, Mater. Lett., 2005, 59, p 3299–3303.

    Article  Google Scholar 

  46. Y.N. Wang and J.C. Huang, The Role of Twinning and Untwinning in Yielding Behavior in Hot-Extruded Mg-Al-Zn Alloy, Acta Mater., 2007, 55, p 897–905.

    Article  CAS  Google Scholar 

  47. X.S. Huang, K. Suzuki and Y. Chino, Static Recrystallization and Mechanical Properties of Mg-4Y-3RE Magnesium Alloy Sheet Processed by Differential Speed Rolling at 823 K, Mater. Sci. Eng. A, 2012, 538, p 281–287.

    Article  CAS  Google Scholar 

  48. A. Granato and K. Lücke, Theory of Mechanical Damping Due to Dislocations, J. Appl. Phys., 1956, 27, p 583–593.

    Article  Google Scholar 

  49. A. Granato and K. Lücke, Application of Dislocation Theory to Internal Friction Phenomena at High Frequencies, J. Appl. Phys., 1956, 27, p 789–805.

    Article  Google Scholar 

  50. H. Watanabe, T. Sawada, Y. Sasakura, N. Ikeo and T. Mukai, Microyielding and Damping Capacity in Magnesium, Scr. Mater., 2014, 87, p 1–4.

    Article  CAS  Google Scholar 

  51. H. Watanabe, Y. Sasakura, N. Ikeo and T. Mukai, Effect of Deformation Twins on Damping Capacity in Extruded Pure Magnesium, J. Alloys Compd., 2015, 626, p 60–64.

    Article  CAS  Google Scholar 

  52. H.G. Yan, X.P. Zhou, X.P. Gao, J.H. Chen, W.J. Xia, B. Su and M. Song, Development of the Fine-Grained Mg-0.6Zr Sheets with Enhanced Damping Capacity by High Strain Rate Rolling, Mater. Charact., 2020, 172, p 110826.

    Article  Google Scholar 

  53. P. Duley, S. Sanyal, T.K. Bandyopadhyay, and S. Mandal, Implications of Grain Size Distribution, Precipitate Evolution and Texture Development on Tensile properties in Hard Plate Hot Forged and Annealed Mg-Zn-Ca-Mn Alloy, Mater. Sci. Eng. A, 2020, 784, p 139288.

    Article  CAS  Google Scholar 

  54. G.D. Fan, M.Y. Zheng, X.S. Hu, K. Wu, W.M. Gan, and H.K. Brokmeier, Internal Friction and Microplastic Deformation Behavior of Pure Magnesium Processed by Equal Channel Angular Pressing, Mater. Sci. Eng. A, 2013, 561, p 100–108.

    Article  CAS  Google Scholar 

  55. K. Sugimoto, K. Niiya, T. Okamoto, and K. Kishitake, A Study of Damping Capacity in Magnesium Alloys, Trans. JIM, 1977, 18, p 277–288.

    Article  CAS  Google Scholar 

  56. K. Sugimoto, K. Matsui, T. Okamoto, and K. Kishitake, Effect of Crystal Orientation on Amplitude-Dependent Damping in Magnesium, Trans. JIM, 1975, 16, p 647–655.

    Article  CAS  Google Scholar 

  57. S.R. Agnew and Ö. Duygulu, Plastic Anisotropy and the Role of Non-basal Slip in Magnesium Alloy AZ31B, Int. J. Plast., 2005, 21, p 1161–1193.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to National Natural Science Foundation of China (51871093).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongge Yan or Jihua Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Yan, H., Chen, J. et al. Effects of Annealing Treatment on Mechanical and Damping Properties of ZK60 Magnesium Alloy Sheets. J. of Materi Eng and Perform 32, 9627–9637 (2023). https://doi.org/10.1007/s11665-023-07821-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-07821-9

Keywords

Navigation