Skip to main content
Log in

Effect of Zn/Ga Ratio on Damping and Thermal Behaviors of Fine-Grained Mg-Zn-Ga Sheets

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The Mg-xZn-yGa (x + y = 1 at.%) alloys are prepared by high strain rate rolling at 300 °C with the rolling strain rate of 9.1 s−1. The effects of the Zn/Ga ratio on microstructure, mechanical, damping and thermal properties of the as-rolled alloys are investigated by x-ray diffraction, tensile testing, dynamic mechanical analyzer and laser-flash method. The as-rolled alloy exhibits the dynamic recrystallization (DRX) volume fraction above 90%. The DRX volume fraction and the grain size increase with the lower Zn/Ga ratio. With the lower Zn/Ga ratio, the elongation and the damping capacity increase gradually. The Mg-1at.%Ga alloy exhibits the highest elongation (31.1%) and the biggest damping capacity, with Q−1 of 0.019 at the strain amplitude of 0.1%. However, the room temperature thermal conductivity decreases with the lower Zn/Ga ratio, and the Mg-1at.%Zn alloy exhibits the highest value (143 W/(m K)). The Mg-0.75at.%Zn-0.25at.%Ga alloy has the best comprehensive performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to time limitations. It cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. B.L. Mordike and T. Ebert, Magnesium: Properties-Application-Potential, Mater. Sci. Eng. A, 2001, 302, p 37–45.

    Article  Google Scholar 

  2. J.H. Jun, Damping Behavior of Mg-Zn-Al Casting Alloys, Mater. Sci. Eng. A, 2016, 665, p 86–89.

    Article  CAS  Google Scholar 

  3. H. Wang, S.Q. Zhang, X.Z. Zou, F. Li and X.Q. Jiang, Magnesium Alloy Coated by Aluminum Process Characteristics and Application Prospects, J. Funct. Mater., 2011, 42, p 788–790.

    CAS  Google Scholar 

  4. Y.C. Lee, A.K. Dahle and D.H. Stjohn, The Role of SOLUTE in Grain Refinement of Magnesium, Metal. Mater. Trans. A, 2000, 31, p 2895–2906.

    Article  Google Scholar 

  5. C. Wang, H.Y. Zhang, H.Y. Wang and G.J. Liu, Effect of Alloying Elements of Doping Atoms on the Generalized Stacking-fault Energies of Mg Alloys from First-Principles Calculations, Scr. Mater., 2013, 69, p 445–448.

    Article  CAS  Google Scholar 

  6. W.S. Huang, J.H. Chen, H.G. Yan, W.J. Xia and W.B. Su, Effects of Ga Content on the Dynamic Recrystallization and Mechanical Properties of High Strain Rate Rolled Mg-Ga Alloy, Met. Mater. Int., 2019, 26, p 747–759.

    Article  Google Scholar 

  7. L. Yu, H.G. Yan, J.H. Chen, W.J. Xia, B. Su and M. Song, Effects of Solid Solution Elements on Damping Capacities of Binary Magnesium Alloys, Mater. Sci. Eng. A, 2020, 772, p 138707.

    Article  CAS  Google Scholar 

  8. H. Pan, F. Pan, R. Yang et al., Thermal and Electrical Conductivity of Binary Magnesium Alloys, J. Mater. Sci., 2014, 49, p 3107–3124.

    Article  CAS  Google Scholar 

  9. S.Q. Zhu, H.G. Yan, J.H. Chen, Y.Z. Wu and J.Z. Liu, Effect of Twinning and Dynamic Recrystallization on the High Strain Rate Rolling Process, Scr. Mater., 2010, 63, p 985–988.

    Article  CAS  Google Scholar 

  10. S.Q. Zhu, H.G. Yan, W.J. Xia, J.Z. Liu and J.F. Jiang, Influence of Different Deformation Processing on the AZ31 Magnesium Alloy Sheets, J. Mater. Sci., 2009, 44, p 3800–3806.

    Article  CAS  Google Scholar 

  11. X.H. Feng, Y.P. Sun, Y.W. Lu, J.M. He and S.Y. Wan, Effect of the Rolling Rate on the Damping and Mechanical Properties of a ZK60 Magnesium Alloy, Mater, 2020, 13, p 2969.

    Article  CAS  Google Scholar 

  12. L.P. Zhong, Y.J. Wang, H. Luo and C.S. Luo, Evolution of the Microstructure, Texture and Thermal Conductivity of As-Extruded ZM60 Magnesium Alloy in Pre-Compression, J. Alloys Compd., 2019, 775, p 707–713.

    Article  CAS  Google Scholar 

  13. H.C. Pan, F.S. Pan, X. Wang, J. Peng, J. She, C.Y. Zhao, Q.Y. Huang, K. Song and Z.Y. Gao, High Conductivity and High Strength Mg-Zn-Cu Alloy, Mater. Sci. Technol., 2014, 30, p 988–994.

    Article  CAS  Google Scholar 

  14. S.Q. Zhu, H.G. Yan, J.H. Chen, Y.Z. Wu, B. Su, Y.G. Du and X.Z. Liao, Feasibility of High Strain-Rate Rolling of a Magnesium Alloy Across a Wide Temperature Range, Scripta. Mater., 2012, 67, p 404–407.

    Article  CAS  Google Scholar 

  15. L. Zhao, H.G. Yan, J.H. Chen and B. Su, Effect of Zn Addition on Dynamic Recrystallization of High Strain Rate Rolled Al-Mg Sheets, Met. Mater. Int., 2021, 37, p 405–412.

    CAS  Google Scholar 

  16. H.E. Friedrich and B.L. Mordike, Magnesium Technology (Metallurgy, Design Date, Applications), Springer, Berlin, 2006, p 269–310

    Google Scholar 

  17. G.E. Totten and D.S. Mackenzie, Handbook of Aluminum Vol 1: Physical Metallurgy and Processes, Vol 1 Marcel Dekker, New York, 2003, p 84–85

    Book  Google Scholar 

  18. J. Zou, J. Chen, H. Yan, W. Xia, B. Su, Y. Lei and Q. Wu, Effects of Sn Addition on Dynamic Recrystallization of Mg-5Zn-1Mn Alloy During High Strain Rate Deformation, Mater. Sci. Eng. A, 2018, 735, p 49–60.

    Article  CAS  Google Scholar 

  19. K. Toyoda, H. Fujita, H. Sawatari and K. Yoshida, Effect of Stacking Fault Energy on Recrystallization in Cold-Worked FCC Crystals, Trans. Jpn. Inst. Metal., 1894, 25, p 339–347.

    Article  Google Scholar 

  20. S.Q. Zhu, H.G. Yan, J.H. Chen, Y.Z. Wu, Y.G. Du and X.Z. Liao, Fabrication of Mg-Al-Zn-Mn Alloy Sheets with Homogeneous Fine-Grained Structures Using High Strain-Rate Rolling in a Wide Temperature Range, Mater. Sci. Eng. A, 2012, 22, p 765–772.

    Google Scholar 

  21. H.B. Liu, G.H. Qi, Y.T. Ma, H. Hao, F. Jia, S.H. Ji, H.Y. Zhang and X.G. Zhang, Microstructure and Mechanical Property of Mg-2.0Ga Alloys, Mater. Sci. Eng. A, 2009, 526, p 7–10.

    Article  Google Scholar 

  22. J.A. Dean, Lange’s Handbook of Chemistry, 16th ed. McGraw-Hill, New York, 2005.

    Google Scholar 

  23. W.S. Huang, J.H. Chen, H.G. Yan, W.J. Xia and W.B. Su, Microstructure, Texture Modification and Mechanical Anisotropy of High Strain Rate Rolled Mg-Ga Alloy Sheets, J. Mater. Sci., 2020, 55, p 10242–10257.

    Article  CAS  Google Scholar 

  24. F. Meng, J.M. Rosalie, A. Singh and K. Tsuchiya, Precipitation Behavior of an Ultra-Fine Grained Mg-Zn Alloy Processed by high-Pressure Torsion, J. Alloys Compd., 2015, 664, p 386–391.

    Google Scholar 

  25. A. Puskar, Internal Friction in Metallic Materials: A Handbook, Springer, Berlin, 2007, p 307–320

    Google Scholar 

  26. A. Granato and K. Lücke, Application of Dislocation Theory to Internal Friction Phenomena at High Frequencies, J. Appl. Phys., 1956, 27, p 583–593.

    Article  Google Scholar 

  27. T. Ying, M.Y. Zheng, Z.T. Li and X.G. Qiao, Thermal Conductivity of As-Cast and As-Extruded Binary Mg-Al alloys, J. Alloys. Compd., 2014, 608, p 19–24.

    Article  CAS  Google Scholar 

  28. Z. Li, X. Li, H. Yan et al., Achieving High Damping and Excellent Ductility of Al-Mg Alloy Sheet by the Coupling Effect of Mg Content and Fine Grain Structure, Mater. Charact., 2021, 174, p 110974.

    Article  CAS  Google Scholar 

  29. H. Suzuki, Segregation of Solute Atoms to Stacking Faults, J. Phys. Soc., 1962, 17, p 322–325.

    Article  CAS  Google Scholar 

  30. G.D. Fan, M.Y. Zheng, X.S. Hu, C. Xu, K. Wu and I.S. Golovin, Improved mechanical Property and Internal Friction of Pure Mg Processed by ECAP, Mater. Sci. Eng. A, 2012, 556, p 588–594.

    Article  CAS  Google Scholar 

  31. K. Sugimoto, K. Matsui, T. Okamoto and K. Kishitake, Effect of Crystal Orientation on Amplitude-Dependent Damping in Magnesium, Mater. Trans. Jim., 1975, 16, p 647–655.

    Article  CAS  Google Scholar 

  32. J. Yuan, K. Zhang, T. Li, X. Li, Y. Li, M. Ma, P. Luo, G. Luo and Y. Hao, Anisotropy of Thermal Conductivity and Mechanical Properties in Mg-5Zn-1Mn Alloy, Mater. Des., 2012, 40, p 257–261.

    Article  CAS  Google Scholar 

  33. H.C. Pan, F.S. Pan, J. Peng, A. Tang, J. Gou, L. Wu and H.W. Dong, High-Conductivity Binary Mg-Zn Sheet Processed by Cold Rolling and Subsequent Aging, J. Alloys Compd., 2013, 578, p 439–500.

    Article  Google Scholar 

  34. J. Peng, L.P. Zhong, Y.J. Wang, Y. Lu and F.S. Pan, Effect of Extrusion Temperature on the Microstructure and Thermal Conductivity of Mg-2.0Zn-1.0Mn-0.2Ce alloys, Mater. Des., 2015, 87, p 914–919.

    Article  CAS  Google Scholar 

  35. B. Noble and T. Pike, Deviations from Matthiessen’s Rule in Some Magnesium-Based Alloys, J. Phys. F. Metal. Phys., 2000, 11, p 587.

    Article  Google Scholar 

  36. L. Zhong, J. Peng, M. Li, Y. Wang, Y. Lu and F. Pan, Microstructure and Thermal Conductivity of As-Cast and As-Extruded Binary Mg-Mn Alloy, J. Alloys Compd., 2016, 661, p 402–410.

    Article  CAS  Google Scholar 

  37. H.C. Pan, F.S. Pan, X. Wang, J. Peng, A. Tang, J. She and J. Gou, Correlation on the Electrical and Thermal Conductivity for Binary Mg-Al and Mg-Zn Alloy, Int. J. Thermophys., 2013, 34, p 1336–1346.

    Article  CAS  Google Scholar 

  38. Y. Miyajima, S.Y. Komatsu, M. Mitsuhara, S. Hata, H. Nakashima and N. Tsuji, Change in Electrical Resistivity of Commercial Purity Aluminum Severely Plastic Deformed, Philos. Mag., 2010, 90, p 4475–4488.

    Article  CAS  Google Scholar 

  39. C.Y. Su, D.J. Li and A.A. Luo, Effect of Solute Atoms and Second Phases on the Thermal Conductivity of Mg-RE Alloys: A Quantitative Study, J. Alloys Compd., 2018, 747, p 431–437.

    Article  CAS  Google Scholar 

  40. X. Tong, G.Q. You, Y.H. Ding, H.S. Xue, Y.C. Wang and W. Guo, Effect of Grain Size on Low-Temperature Electrical Resistivity and Thermal Conductivity of Pure Magnesium, Mater. Lett., 2018, 229, p 261–264.

    Article  CAS  Google Scholar 

  41. T. Ying, H. Chi, M.Y. Zheng, Z.T. Li and C. Uher, Low-Temperature Electrical Resistivity and Thermal Conductivity of Binary Magnesium Alloys, Acta. Mater., 2014, 80, p 28–295.

    Article  Google Scholar 

  42. A. Rudajevovoa and P. Lukac, Thermal Properties of Reinforced QE22 Magnesium alloy, Phys. Stat. Sol. A, 1999, 457, p 175.

    Google Scholar 

Download references

Acknowledgment

The authors are grateful for the support of the Natural Science Foundation Project of China (51871093).

Author information

Authors and Affiliations

Authors

Contributions

JH Investigation, Date curation, Writing-original Draft; JC Writing-Review and Editing, Funding acquisition; HY Conceptualization, Methodology; WX Formal analysis, Project administration; BS Validation; PP Validation; MZ Validation; JH Validation

Corresponding authors

Correspondence to Jihua Chen or Hongge Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Chen, J., Yan, H. et al. Effect of Zn/Ga Ratio on Damping and Thermal Behaviors of Fine-Grained Mg-Zn-Ga Sheets. J. of Materi Eng and Perform 31, 5201–5211 (2022). https://doi.org/10.1007/s11665-022-06605-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06605-x

Keywords

Navigation