Skip to main content
Log in

Multicomponent Flux for Improved Penetration and Metallurgical Properties Using A-GTAW

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Activated flux gas tungsten arc welding of 316L austenitic stainless steel plates was carried out using different multicomponent fluxes composed of various oxides. The performance of these fluxes was further compared with SiO2 flux for different weld characteristics such as macro and microstructure. Hardness and residual stress analysis on weld beads were carried out. Electrochemical corrosion tests were conducted, to study the corrosion behaviors of the weld. Tool wear pattern and mechanism were analyzed. Among all used multicomponent fluxes, flux composed of 40% SiO2, 35% TiO2, 15% MoO3, and 10% NiO named Flux-3 provided better weld quality. A better depth of penetration with fine dendritic grain structure was obtained using a Flux-3. Better conceived residual stress from higher depth-to-width ratio of weld using Flux-3 is supported by XRD stress analysis. A lower corrosion rate was observed in the welds using Flux-3. Tool wear in welding with Flux-3 was higher compared with welding without any flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K. Hariharan, G. Balachandran, and M.S. Prasad, Application of Cost-Effective Stainless Steel for Automotive Components, Mater. Manuf. Process., 2009, 24(12), p 1442–1452. https://doi.org/10.1080/10426910903179989

    Article  Google Scholar 

  2. Y.H. Kim, K.Y. Kim, and Y.D. Lee, Nitrogen-Alloyed, Metastable Austenitic Stainless Steel for Automotive Structural Applications, Mater. Manuf. Process., 2004, 19(1), p 51–59. https://doi.org/10.1081/AMP-120027498

    Article  CAS  Google Scholar 

  3. S. Kou, Welding Metallurgy, Wiley, Hoboken, 2002. https://doi.org/10.1002/0471434027

    Book  Google Scholar 

  4. P. Sharma and D.K. Dwivedi, Comparative Study of Activated Flux-GTAW and Multipass-GTAW Dissimilar P92 Steel-304H ASS Joints, Mater. Manuf. Process., 2019, 34(11), p 1195–1204. https://doi.org/10.1080/10426914.2019.1605175

    Article  CAS  Google Scholar 

  5. J.P. Oliveira, T.M. Curado, Z. Zeng, J.G. Lopes, E. Rossinyol, J.M. Park, N. Schell, F.M. Braz Fernandes, and H.S. Kim, Gas Tungsten Arc Welding of As-Rolled CrMnFeCoNi High Entropy Alloy, Mater. Des., 2020, 189, p 108505.

    Article  CAS  Google Scholar 

  6. M. Ragavendran and M. Vasudevan, Laser and Hybrid Laser Welding of Type 316L(N) Austenitic Stainless Steel Plates, Mater. Manuf. Process., 2020, 35(8), p 922–934. https://doi.org/10.1080/10426914.2020.1745231

    Article  CAS  Google Scholar 

  7. S. Lathabai, B.L. Jarvis, and K.J. Barton, Comparison of Keyhole and Conventional Gas Tungsten Arc Welds in Commercially Pure Titanium, Mater. Sci. Eng. A, 2001, 299(1–2), p 81–93. https://doi.org/10.1016/S0921-5093(00)01408-8

    Article  Google Scholar 

  8. A.M. Sales, E.M. Westin, and B.L. Jarvis, Effect of Nitrogen in Shielding Gas of Keyhole GTAW on Properties of Duplex and Superduplex Welds, Weld. World, 2017, 61(6), p 1133–1140.

    Article  CAS  Google Scholar 

  9. D.S. Howse and W. Lucas, Investigation into Arc Constriction by Active Fluxes for Tungsten Inert Gas Welding, Sci. Technol. Weld. Join., 2000, 5(3), p 189–193.

    Article  CAS  Google Scholar 

  10. A. Kulkarni, D.K. Dwivedi, and M. Vasudevan, Study of Mechanism, Microstructure and Mechanical Properties of Activated Flux TIG Welded P91 Steel-P22 Steel Dissimilar Metal Joint, Mater. Sci. Eng. A, 2018, 731, p 309–323.

    Article  CAS  Google Scholar 

  11. P.J. Modenesi, E.R. Apolinário, and I.M. Pereira, TIG Welding with Single-Component Fluxes, J. Mater. Process. Technol., 2000, 99(1), p 260–265.

    Article  Google Scholar 

  12. Y. Morisada, H. Fujii, and N. Xukun, Development of Simplified Active Flux Tungsten Inert Gas Welding for Deep Penetration, Mater. Des., 2014, 54, p 526–530. https://doi.org/10.1016/j.matdes.2013.08.081

    Article  CAS  Google Scholar 

  13. K.D. Ramkumar, B.M. Kumar, M.G. Krishnan, S. Dev, A.J. Bhalodi, N. Arivazhagan, and S. Narayanan, Studies on the Weldability, Microstructure and Mechanical Properties of Activated Flux TIG Weldments of Inconel 718, Mater. Sci. Eng. A, 2015, 639, p 234–244.

    Article  CAS  Google Scholar 

  14. S. Tathgir and A. Bhattacharya, Activated-TIG Welding of Different Steels: Influence of Various Flux and Shielding Gas, Mater. Manuf. Process., 2016, 31(3), p 335–342. https://doi.org/10.1080/10426914.2015.1037914

    Article  CAS  Google Scholar 

  15. R.S. Vidyarthy and D.K. Dwivedi, Activating Flux Tungsten Inert Gas Welding for Enhanced Weld Penetration, J. Manuf. Process., 2016, 22, p 211–228. https://doi.org/10.1016/J.JMAPRO.2016.03.012

    Article  Google Scholar 

  16. X. Wang, J. Huang, Y. Huang, D. Fan, and Y. Guo, Investigation of Heat Transfer and Fluid Flow in Activating TIG Welding by Numerical Modeling, Appl. Therm. Eng., 2017, 113, p 27–35.

    Article  Google Scholar 

  17. K.-H. Tseng and C.-Y. Hsu, Performance of Activated TIG Process in Austenitic Stainless Steel Welds, J. Mater. Process. Technol., 2011, 211(3), p 503–512. https://doi.org/10.1016/J.JMATPROTEC.2010.11.003

    Article  CAS  Google Scholar 

  18. T.-S. Chern, K.-H. Tseng, and H.-L. Tsai, Study of the Characteristics of Duplex Stainless Steel Activated Tungsten Inert Gas Welds, Mater. Des., 2011, 32(1), p 255–263. https://doi.org/10.1016/j.matdes.2010.05.056

    Article  CAS  Google Scholar 

  19. M. Vasudevan, Effect of A-TIG Welding Process on the Weld Attributes of Type 304LN and 316LN Stainless Steels, J. Mater. Eng. Perform., 2017, 26, p 1325.

    Article  CAS  Google Scholar 

  20. S. Jayakrishnan, P. Chakravarthy, and A. Muhammed Rijas, Effect of Flux Gap and Particle Size on the Depth of Penetration in FBTIG Welding of Aluminium, Trans. Indian Inst. Met., 2017, 70(5), p 1329–1335. https://doi.org/10.1007/s12666-016-0929-1

    Article  CAS  Google Scholar 

  21. S. Jayakrishnan and P. Chakravarthy, Flux Bounded Tungsten Inert Gas Welding for Enhanced Weld Performance—A Review, J. Manuf. Process., 2017, 28, p 116–130. https://doi.org/10.1016/j.jmapro.2017.05.023

    Article  Google Scholar 

  22. D. Pandya, A. Badgujar, and N. Ghetiya, A Novel Perception Toward Welding of Stainless Steel by Activated TIG Welding: A Review, Mater. Manuf. Process., 2021, 36(8), p 877–903. https://doi.org/10.1080/10426914.2020.1854467

    Article  CAS  Google Scholar 

  23. M. Kuo, Z. Sun, and D. Pan, Laser Welding with Activating Flux, Sci. Technol. Weld. Join., 2001, 6(1), p 17–22.

    Article  Google Scholar 

  24. A. Babbar, A. Kumar, V. Jain, and D. Gupta, Enhancement of Activated Tungsten Inert Gas (A-TIG) Welding Using Multi-component TiO2-SiO2-Al2O3 Hybrid Flux, Measurement, 2019, 148, p 106912. https://doi.org/10.1016/j.measurement.2019.106912

    Article  Google Scholar 

  25. H.L. Lin and T.M. Wu, Effects of Activating Flux on Weld Bead Geometry of Inconel 718 Alloy TIG Welds, Mater. Manuf. Process., 2012, 27(12), p 1457–1461.

    Article  CAS  Google Scholar 

  26. H.-Y. Huang, Effects of Shielding Gas Composition and Activating Flux on GTAW Weldments, Mater. Des., 2009, 30(7), p 2404–2409. https://doi.org/10.1016/J.MATDES.2008.10.024

    Article  CAS  Google Scholar 

  27. S.G. Nayee and V.J. Badheka, Effect of Oxide-Based Fluxes on Mechanical and Metallurgical Properties of Dissimilar Activating Flux Assisted-Tungsten Inert Gas Welds, J. Manuf. Process., 2014, 16(1), p 137–143. https://doi.org/10.1016/J.JMAPRO.2013.11.001

    Article  Google Scholar 

  28. E. Ahmadi and A.R. Ebrahimi, Welding of 316L Austenitic Stainless Steel with Activated Tungsten Inert Gas Process, J. Mater. Eng. Perform., 2015, 24(2), p 1065–1071. https://doi.org/10.1007/s11665-014-1336-6

    Article  CAS  Google Scholar 

  29. V. Maduraimuthu, M. Vasudevan, V. Muthupandi, A.K. Bhaduri, and T. Jayakumar, Effect of Activated Flux on the Microstructure, Mechanical Properties, and Residual Stresses of Modified 9Cr-1Mo Steel Weld Joints, Metall. Mater. Trans. B Process. Metall. Mater. Process. Sci., 2012, 43(1), p 123–132.

    Article  CAS  Google Scholar 

  30. D. Patel and S. Jani, Techniques to Weld Similar and Dissimilar Materials by ATIG Welding—An Overview, Mater. Manuf. Process., 2020, 00(00), p 1–16. https://doi.org/10.1080/10426914.2020.1802040

    Article  CAS  Google Scholar 

  31. S. Lu, H. Fujii, H. Sugiyama, and K. Nogi, Mechanism and Optimization of Oxide Fluxes for Deep Penetration in Gas Tungsten Arc Welding, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2003, 34A(9), p 1901–1907.

    Article  CAS  Google Scholar 

  32. S.A. Kumar and P. Sathiya, Experimental Investigation of the A-TIG Welding Process of Incoloy 800H, Mater. Manuf. Process., 2015, 30(9), p 1154–1159. https://doi.org/10.1080/10426914.2015.1019092

    Article  CAS  Google Scholar 

  33. K. Devendranath Ramkumar, S. Dev, V. Saxena, A. Choudhary, N. Arivazhagan, and S. Narayanan, Effect of Flux Addition on the Microstructure and Tensile Strength of Dissimilar Weldments Involving Inconel 718 and AISI 416, Mater. Des., 2015, 87, p 663–674. https://doi.org/10.1016/j.matdes.2015.08.075

    Article  CAS  Google Scholar 

  34. D. Fan and Y. Huang, Study on Activating Tig Welding for Aluminium Alloys, Weld. World, 2013, 49(1), p 22–25. https://doi.org/10.1007/BF03266459

    Article  Google Scholar 

  35. M. Vasudevan, Effect of A-TIG Welding Process on the Weld Attributes of Type 304LN and 316LN Stainless Steels, J. Mater. Eng. Perform., 2017, 26(3), p 1325–1336. https://doi.org/10.1007/s11665-017-2517-x

    Article  CAS  Google Scholar 

  36. J. Sivakumar, M. Vasudevan, and N.N. Korra, Effect of Activated Flux Tungsten Inert Gas (A-TIG) Welding on the Mechanical Properties and the Metallurgical and Corrosion Assessment of Inconel 625, Weld. World, 2021, 65(6), p 1061–1077. https://doi.org/10.1007/s40194-020-01061-4

    Article  CAS  Google Scholar 

  37. R.S. Vidyarthy and D.K. Dwivedi, Analysis of the Corrosion Behavior of an A-TIG Welded SS 409 Weld Fusion Zone, J. Mater. Eng. Perform., 2017, 26(11), p 5375–5384. https://doi.org/10.1007/S11665-017-3022-Y

    Article  CAS  Google Scholar 

  38. K.D. Ramkumar, P.S. Goutham, V.S. Radhakrishna, A. Tiwari, and S. Anirudh, Studies on the Structure-Property Relationships and Corrosion Behaviour of the Activated Flux TIG Welding of UNS S32750, J. Manuf. Process., 2016, 23, p 231–241. https://doi.org/10.1016/j.jmapro.2016.05.006

    Article  Google Scholar 

  39. W. Chuaiphan and L. Srijaroenpramong, Effect of Welding Speed on Microstructures, Mechanical Properties and Corrosion Behavior of GTA-Welded AISI 201 Stainless Steel Sheets, J. Mater. Process. Technol., 2014, 214(2), p 402–408.

    Article  CAS  Google Scholar 

  40. A.V. Bansod, A.P. Patil, and S. Shukla, Effect of Heat on Microstructural, Mechanical and Electrochemical Evaluation of Tungsten Inert Gas Welding of Low-Nickel ASS, Anti-Corrosion Methods Mater., 2018, 65(6), p 605–615.

    Article  CAS  Google Scholar 

  41. G. Shit, M.V. Kuppusamy, and S. Ningshen, Corrosion Resistance Behavior of GTAW Welded AISI Type 304L Stainless Steel, Transactions of the Indian Institute of Metals, 2019, 72, p 2981–2995.

    Article  CAS  Google Scholar 

  42. H. Ozden and K.T. Gursel, Service Life of Tungsten Electrodes in Hyperbaric Dry Underwater Welding Service Life Diagrams Were Developed for Two Types of Commonly Used Tungsten Electrodes, Weld. J., 2005, 84(6), p 94–99.

    Google Scholar 

  43. P. Sahoo, T. Debroy, and M.J. McNallan, Surface Tension of Binary Metal—Surface Active Solute Systems under Conditions Relevant to Welding Metallurgy, Metall. Trans. B, 1988, 19(3), p 483–491. https://doi.org/10.1007/BF02657748

    Article  Google Scholar 

  44. S. Tathgir, D.W. Rathod, and A. Batish, Process Enhancement Using Hydrogen-Induced Shielding: H2-Induced A-TIG Welding Process, Mater. Manuf. Process., 2020, 35(10), p 1084–1095. https://doi.org/10.1080/10426914.2020.1765251

    Article  CAS  Google Scholar 

  45. L. Backman and E.J. Opila, Thermodynamic Assessment of the Group IV, V and VI Oxides for the Design of Oxidation Resistant Multi-Principal Component Materials, J. Eur. Ceram. Soc., 2019, 39(5), p 1796–1802. https://doi.org/10.1016/j.jeurceramsoc.2018.11.004

    Article  CAS  Google Scholar 

  46. P. Sharma and D.K. Dwivedi, Study on Flux Assisted-Tungsten Inert Gas Welding of Bimetallic P92 Martensitic Steel-304H Austenitic Stainless Steel Using SiO2–TiO2 Binary Flux, Int. J. Press. Vessel. Pip., 2021, 192, p 104423.

    Article  CAS  Google Scholar 

  47. Y. Feng, Z. Luo, Z. Liu, Y. Li, Y. Luo, and Y. Huang, Keyhole Gas Tungsten Arc Welding of AISI 316L Stainless Steel, Mater. Des., 2015, 85, p 24–31. https://doi.org/10.1016/J.MATDES.2015.07.011

    Article  CAS  Google Scholar 

  48. H.Y. Huang, S.W. Shyu, K.H. Tseng, and C.P. Chou, Evaluation of TIG Flux Welding on the Characteristics of Stainless Steel, Sci. Technol. Weld. Join., 2005, 10(5), p 566–573. https://doi.org/10.1179/174329305X48329

    Article  CAS  Google Scholar 

  49. A.A. Ogwu, T.H. Darma, and E. Bouquerel, Electrical Resistivity of Copper Oxide Thin Films Prepared by Reactive Magnetron Sputtering, J. Achiev. Mater. Manuf. Eng., 2007, 24(1), p 172–177.

    Google Scholar 

  50. A.J. Hassan, Study of Optical and Electrical Properties of Nickel Oxide (NiO) Thin Films Depo-Sited by Using a Spray Pyrolysis Technique, J. Mod. Phys., 2014, 5, p 2184–2191. https://doi.org/10.4236/jmp.2014.518212

    Article  Google Scholar 

  51. P. Dutta, Y. Joshi, and C. Franche, Determination of Gas Tungsten Arc Welding Efficiencies, Exp. Therm. Fluid Sci., 1994, 9(1), p 80–89.

    Article  Google Scholar 

  52. S. Kumar and A.S. Shahi, Effect of Heat Input on the Microstructure and Mechanical Properties of Gas Tungsten Arc Welded AISI 304 Stainless Steel Joints, Mater. Des., 2011, 32(6), p 3617–3623.

    Article  CAS  Google Scholar 

  53. H. Schönmaier, R. Krein, M. Schmitz-Niederau, and R. Schnitzer, Influence of the Heat Input on the Dendritic Solidification Structure and the Mechanical Properties of 2.25Cr-1Mo-0.25V Submerged-Arc Weld Metal, J. Mater. Eng. Perform., 2021, 30(10), p 7138–7151. https://doi.org/10.1007/s11665-021-05922-x

    Article  CAS  Google Scholar 

  54. Y.C. Lin and P.Y. Chen, Effect of Nitrogen Content and Retained Ferrite on the Residual Stress in Austenitic Stainless Steel Weldments, Materials Science and Engineering, 2001, 307, p 165–171.

    Article  Google Scholar 

  55. ASTM, Standard Practice for Calculation of Corrosion Rates and Related Information (ASTM G 102, 1999), p 1–7. https://doi.org/10.1520/G0102-89R10.

  56. S. Tanhaei, K. Gheisari, and S.R. Alavi Zaree, Effect of Cold Rolling on the Microstructural, Magnetic, Mechanical, and Corrosion Properties of AISI 316L Austenitic Stainless Steel, Int. J. Miner. Metall. Mater., 2018, 25(6), p 630–640. https://doi.org/10.1007/s12613-018-1610-y

    Article  CAS  Google Scholar 

  57. H. Ferreira Gomes De Abreu, S. Santana De Carvalho, P. De Lima Neto, R. Pires, D. Santos, N. Freire, P. Maria De Oliveira Silva, S. Souto, and M. Tavares, Deformation Induced Martensite in an AISI 301LN Stainless Steel: Characterization and Influence on Pitting Corrosion Resistance, Mater. Res., 2007, 10(4), p 359–366.

    Article  Google Scholar 

  58. J.C. Lippold and D.J. Kotecki, Welding Metallurgy and Weldability of Stainless Steels, Wiley, Hoboken, 2005.

    Google Scholar 

  59. V. Kuzucu, M. Aksoy, and M.H. Korkut, The Effect of Strong Carbide-Forming Elements Such as Mo, Ti, V and Nb on the Microstructure of Ferritic Stainless Steel, J. Mater. Process. Technol., 1998, 82(1–3), p 165–171.

    Article  Google Scholar 

  60. K. Touileb, A. Ouis, R. Djoudjou, A.C. Hedhibi, H. Alrobei, I. Albaijan, B. Alzahrani, E.S.M. Sherif, and H.S. Abdo, Effects of ATIG Welding on Weld Shape, Mechanical Properties, and Corrosion Resistance of 430 Ferritic Stainless Steel Alloy, Metals (Basel), 2020, 10(3), p 404. https://doi.org/10.3390/met10030404

    Article  CAS  Google Scholar 

  61. S.P. Sridhar, S. Arun Kumar, and P. Sathiya, A Study on the Effect of Different Activating Flux on A-TIG Welding Process of Incoloy 800H, Adv. Mater. Sci., 2016, 16(3), p 26–37. https://doi.org/10.1515/adms-2016-0014

    Article  CAS  Google Scholar 

  62. V. Tandon, M.A. Thombre, A.P. Patil, R.V. Taiwade, and H. Vashishtha, Effect of Heat Input on the Microstructural, Mechanical, and Corrosion Properties of Dissimilar Weldment of Conventional Austenitic Stainless Steel and Low-Nickel Stainless Steel, Metallogr. Microstruct. Anal., 2020, 9(5), p 668–677. https://doi.org/10.1007/s13632-020-00681-y

    Article  CAS  Google Scholar 

  63. M. Dadfar, M.H. Fathi, F. Karimzadeh, M.R. Dadfar, and A. Saatchi, Effect of TIG Welding on Corrosion Behavior of 316L Stainless Steel, Mater. Lett., 2007, 61(11–12), p 2343–2346. https://doi.org/10.1016/j.matlet.2006.09.008

    Article  CAS  Google Scholar 

  64. T. Ramkumar, M. Selvakumar, P. Narayanasamy, A.A. Begam, P. Mathavan, and A.A. Raj, Studies on the Structural Property, Mechanical Relationships and Corrosion Behaviour of Inconel 718 and SS 316L Dissimilar Joints by TIG Welding without Using Activated Flux, J. Manuf. Process., 2017, 30, p 290–298. https://doi.org/10.1016/J.JMAPRO.2017.09.028

    Article  Google Scholar 

  65. F. Matsuda, M. Ushio, and T. Kumagai, Study on Gas-Tungsten-Arc Electrode (Report 1): Comparative Study of Characteristics of Oxide-Tungsten Cathode (Welding Physics, Process & Instrument), Trans. JWRI, 1986, 15(1), p 13–19.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Department of Metallurgical and Materials Engineering, Veer Surendra Sai University of Technology, Burla, for providing facilities to carry out this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilakantha Sahu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, N., Panda, D., Badjena, S.K. et al. Multicomponent Flux for Improved Penetration and Metallurgical Properties Using A-GTAW. J. of Materi Eng and Perform 32, 4237–4248 (2023). https://doi.org/10.1007/s11665-022-07383-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07383-2

Keywords

Navigation