Skip to main content
Log in

Effect of Flux Gap and Particle Size on the Depth of Penetration in FBTIG Welding of Aluminium

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Flux Bounded TIG welding is a variation of Activated TIG welding wherein a narrow strip of base metal is coated with activating flux and is exposed to the arc during welding. Bead on plate welds by FBTIG process on commercially pure aluminium plates were performed using silica as flux. This paper investigated the effect of flux gap and flux powder particle size on the weld penetration and depth to width ratio. Microstructural analysis was carried out to understand the changes in grain structure in the weld pool and adjacent zones. It was observed that the weld penetration and depth to width ratio increased with the decreasing flux gap. Also, results showed better penetration for activating flux with finer flux powder size. The mechanisms that supported these observations have been explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Brungraber R J, and Nelson F G, Weld Res (Suppl Weld J) (1973) 97.

  2. Simonik A G, Weld Prod 3 (1976) 49.

    Google Scholar 

  3. Ruckert G, Perry N, Sire S, Marya S, Enhanced Weld Penetrations In GTA Welding with Activating Fluxes Case studies: Plain Carbon & Stainless Steels, Titanium and Aluminum. THERMEC, p 202.

  4. Sire S, and Marya S, Int J Form Process 5 (2002) 39.

    Article  Google Scholar 

  5. Modenesi P J, Apolinario E R, and Pereira I M, J Mater Process Technol 99 (2000) 260.

    Article  Google Scholar 

  6. Leconte S, Paillard P, and Saindrenan J, Sci Technol Weld Join 11 (2006) 43.

    Article  Google Scholar 

  7. Mitchell B S, An Introduction to Materials Engineering and Science for Chemical and Material Engineers, Wiley-Blackwell, New Jersey (2004).

    Google Scholar 

  8. Patel A B, and Patel S P, Int J Eng Res Appl 4 (2014) 41.

    Google Scholar 

  9. Zhao Y, Yang G, Yan K, and Liu W, Adv Mater Res 311313 (2011) 2385.

    Article  Google Scholar 

  10. Fan D, Zhang R, Gu Y, and Ushio M, Trans JWRI 30 (2001) 35.

    Google Scholar 

  11. Howse D S, and Lucas W, Sci Technol Weld Join 5 (2000) 189.

    Article  Google Scholar 

  12. Fujii H, Sato T, Lu S, and Nogi K, Mater Sci Eng A 495 (2008) 296.

    Article  Google Scholar 

  13. Xu Y L, Dong Z B, Wei Y H, and Yang C L, Theor Appl Fract Mech 48 (2007) 178.

    Article  Google Scholar 

  14. Lu S, Fujii H, and Nogi K, Mater Sci Eng A 380 (2004) 290.

    Article  Google Scholar 

  15. Sattler K D, Handbook of Nanophyics, Nanoparticles and Quantum Dots, CRC Press, Taylor & Francis Group, Boca Raton (2011).

    Google Scholar 

  16. Lai S L, Guo J Y, Petrova V, Ramanath G, and Allen L H, Phys Rev Lett 77 (1996) 99.

    Article  Google Scholar 

  17. Lu S, Fujii H, Sugiyama H, Tanaka M, and Nogi K, Mater Trans 43 (2002) 2926.

    Article  Google Scholar 

  18. Ruckert G, Huneau B, and Marya S, Mater Des 28 (2007) 2387.

    Article  Google Scholar 

  19. Santhana Babu A V, Giridharan P K, Ramesh Narayanan P, Narayana Murty S V S, and Sharma V M J, J Adv Manuf Syst 13 (2014) 103.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Shri. Santhana Babu, Scientist, SHAR, ISRO for providing the necessary materials for the experiment and Shri. Thomas Varghese for providing assistance for carrying out the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jayakrishnan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayakrishnan, S., Chakravarthy, P. & Muhammed Rijas, A. Effect of Flux Gap and Particle Size on the Depth of Penetration in FBTIG Welding of Aluminium. Trans Indian Inst Met 70, 1329–1335 (2017). https://doi.org/10.1007/s12666-016-0929-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-016-0929-1

Keywords

Navigation