Skip to main content
Log in

Mechanism and optimization of oxide fluxes for deep penetration in gas tungsten arc welding

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Five single oxide fluxes—Cu2O, NiO, SiO2, CaO, and Al2O3—were used to investigate the effect of active flux on the depth/width ratio in SUS304 stainless steel. The flux quantity, stability, and particlesize effect on the weld-pool shape and oxygen content in the weld after welding was studied systematically. The results showed that the weld depth/width ratio initially increased, followed by a decrease with the increasing flux quantity of the Cu2O, NiO, and SiO2 fluxes. The depth/width ratio is not sensitive to the CaO flux when the quantity is over 80×10−5 mol on the 5×0.1×50 mm slot. The Al2O3 flux has no effect on the penetration. The oxygen content dissolved in the weld plays an important role in altering the liquid-pool surface-tension gradient and the weld penetration. The effective range of oxygen in the weld is between 70 and 300 ppm. A too-high or too-low oxygen content in the weld pool does not increase the depth/width ratio. The decomposition of the flux significantly depends on the flux stability and the particle size. Cu2O has a narrow effective flux-quantity range for the deep penetration, while the Al2O3 flux has no effect. The SiO2 flux with a small particle size (0.8 or 4 µm) is a highly recommended active flux for deep penetration in actual gas tungsten arc welding (GTAW) applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Pollard: Welding J., 1988, vol. 67, pp. 202s-213s.

    Google Scholar 

  2. Y. Takeuchi, R. Takagi, and T. Shinoda: Welding J., 1992, vol. 71, pp. 283s-289s.

    Google Scholar 

  3. S. Sire and S. Marya: Proc. 7th Int. Welding Symp. on Today and Tomorrow in Science and Technology of Welding and Joining, Kobe, Japan, Japan Welding Society, Tokyo, Japan, Nov. 20–22, 2001, pp. 113–18.

    Google Scholar 

  4. P.C.J. Anderson and R. Wiktorowicz: Welding Met. Fab., 1996, vol. 64, pp. 108–09.

    CAS  Google Scholar 

  5. T. Paskell, C. Lundin, and H. Castner: Welding J., 1997, vol. 76, pp. 57–62.

    CAS  Google Scholar 

  6. S. Sire and S. Marya: C.R. Mecanique, 2002, vol. 330, pp. 83–89.

    Article  CAS  Google Scholar 

  7. S.M. Gurevich and V.N. Zamkov: Avtom. Svarka., 1966, vol. 12, pp. 13–16.

    Google Scholar 

  8. P.J. Modenesi, E.R. Apolinario, and I.M. Pereira: J. Mater. Proc. Tech-nol., 2000, vol. 99, pp. 260–65.

    Article  Google Scholar 

  9. S. Kou and Y.H. Wang: Welding J., 1986, vol. 65, pp. 63s-70s.

    Google Scholar 

  10. M. Tanaka, T. Shimizu, H. Terasaki, M. Ushio, F. Koshi-ishi, and C.L. Yang: Sci. Technol. Welding Joining, 2000, vol. 5, pp. 397–402.

    Article  CAS  Google Scholar 

  11. D.S. Howse and W. Lucas: Sci. Technol. Welding Joining, 2000, vol. 5, pp. 189–93.

    Article  CAS  Google Scholar 

  12. H.C. Ludwig: Welding J., 1968, vol. 47, pp. 234s-40s.

    CAS  Google Scholar 

  13. Ding Fan, Ruihua Zhang, Yufen Gu, and M. Ushio: Trans. JWRI, 2001, vol. 30, pp. 35–40.

    CAS  Google Scholar 

  14. S. Marya and S. Sire: Proc. 7th Int. Weld. Symp. on Today and Tomorrow in Science and Technology of Welding and Joining, Kobe, Japan, Japan Welding Society, Tokyo, Japan, Nov. 20–22, 2001, pp. 107–12.

    Google Scholar 

  15. T. Ohji, A. Miyake, M. Tamura, H. Inoue, and K. Nishiguchi: J. Jpn. Welding Soc., 1990, vol. 8, pp. 54–58.

    CAS  Google Scholar 

  16. V.S. Mechev: Welding Int., 1993, vol. 7, pp. 154–56.

    Article  Google Scholar 

  17. C.R. Heiple and J.R. Roper: Welding J., 1982, vol. 61, pp. 97s-102s.

    Google Scholar 

  18. C.R. Heiple, J.R. Roper, R.T. Stagner, and R.J. Aden: Welding J., 1983, vol. 62, pp. 72s-77s.

    Google Scholar 

  19. H. Fujii, N. Sogabe, M. Kamai, and K. Nogi: Proc. 7th Int Welding Symp. on Today and Tomorrow in Science and Technology of Welding and Joining, Kobe, Japan, Japan Welding Society, Tokyo, Japan, Nov. 20–22, 2001, pp. 131–36.

    Google Scholar 

  20. C.R. Heiple and J.R. Roper: Welding J., 1981, vol. 60, pp. 143s-45s.

    Google Scholar 

  21. S. Kou and D.K. Sun: Metall. Trans. A, 1985, vol. 16A, pp. 203–13.

    CAS  Google Scholar 

  22. S. Kou and Y.H. Wang: Welding J., 1986, vol. 65, pp. 63s-70s.

    Google Scholar 

  23. C. Limmaneevichitr and S. Kou: Welding J., 2000, vol. 79, pp. 324s-330s.

    Google Scholar 

  24. Y. Wang and H.L. Tsai: Metall. Mater. Trans. B, 2001, vol. 32B, p. 501.

    CAS  Google Scholar 

  25. Y. Wang, O. Shi, and H.L. Tsal: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 145–61.

    CAS  Google Scholar 

  26. G.M. Oreper, T.W. Eagar, and J. Szekely: Welding J., 1983, vol. 62, pp. 307s-12s.

    Google Scholar 

  27. C.R. Heiple and P. Burgardt: Welding J., 1985, vol. 64, pp. 159s-62s.

    Google Scholar 

  28. J.R. Roper and D.L. Olson: Welding J., 1978, vol. 57, pp. 103s-07s.

    Google Scholar 

  29. H. Tamatsu, K. Nogi, and K. Ogino: J. High. Temp. Soc., 1992, vol. 18, pp. 14–19.

    Google Scholar 

  30. C.H. Wu and D.Q. Hao: Physical Chemistry, 1st ed., Machine Building Press, Beijing, 1988, pp. 138, pp. 287–89.

    Google Scholar 

  31. H.G. Kraus: Weld. J., 1989, vol. 68, pp. 269s-79s.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, S., Fujii, H., Sugiyama, H. et al. Mechanism and optimization of oxide fluxes for deep penetration in gas tungsten arc welding. Metall Mater Trans A 34, 1901–1907 (2003). https://doi.org/10.1007/s11661-003-0155-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0155-4

Keywords

Navigation