Skip to main content
Log in

Effects of Ga Content on Dynamic Recrystallization and Mechanical Properties of High Strain Rate Rolled Mg–Ga Alloys

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The Mg–xGa (x = 1, 2, 3 and 5 in mass%) alloys are subjected to high strain rate rolling (HSRR) at 275 °C with the rolling strain rate of 9.1 s−1 to develop high performance Mg alloy sheets with high plasticity. Effects of Ga content on microstructure and mechanical properties of the Mg–Ga alloys are investigated by SEM, XRD, tensile testing and etc. The Ga addition can reduce the critical strain of DRX in Mg alloys, which is associated with the reduced stacking fault energy, the increased twinning density during deformation and the more DRX nucleation sites during HSRR. With the Ga content increasing from 2 to 3%, the reduced DRX degree is attributable to the hindrance of dynamic precipitates. With the Ga content increasing from 3 to 5%, the slightly increased DRX degree can be ascribed to the relatively coarse precipitates. The Mg–2 Ga alloy sheet, featured with complete DRX, exhibits an ultra-high plasticity (with the elongation to rupture of 36.6%) and a relatively low anisotropy of yield strength and plasticity. The Mg–5 Ga alloy sheet has the best comprehensive mechanical properties, with the ultimate tensile strength of 292 MPa, yield strength of 230 MPa and elongation to rupture of 30.3%, which can be ascribed to the combination of grain refinement strengthening and precipitation strengthening.

Graphic Abstract

Effects of Ga content on microstructure, dynamic recrystallization (DRX) and mechanical properties of the Mg-Ga alloys prepared by high strain rate rolling (HSRR) are systematically studied. Among all the alloys, the HSRRed Mg-2Ga alloy exhibits the smallest DRX critical strain, an ultrahigh plasticity (δ up to 36.6%) and a low anisotropy of yield strength and plasticity, due to the complete DRX. The HSRRed Mg-5Ga alloy shows the optimal mechanical properties, with σb of 292 MPa, σ0.2 of 230 MPa and δ of 30.3%. The high strength is mainly attributed to precipitation strengthening and grain refinement strengthening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Hirsch, T. Al-Samman, Acta Mater. 61, 818–843 (2013)

    CAS  Google Scholar 

  2. B.L. Mordike, Mater. Sci. Eng. A 302, 37–45 (2001)

    Google Scholar 

  3. A.A. Luo, N.R. Neelameggham, Materials comparison and potential applications of magnesium in automobiles. In: Essential Readings in Magnesium Technology, (Springer, Berlin, 2016), pp. 25–34

    Google Scholar 

  4. K. Hono, C.L. Mendis, T.T. Sasaki, Scr. Mater. 63, 710–715 (2010)

    CAS  Google Scholar 

  5. A.R. Antoniswamy, E.M. Taleff, L.H. Jr, J.T. Carter, Mater. Sci. Eng. A 631, 1–9 (2015)

    CAS  Google Scholar 

  6. D. Raabe, Recovery and recrystallization: phenomena, physics, models, simulation, in Physical Metallurgy, (Elsevier, Germany, 2014), pp. 2291–2397

    Google Scholar 

  7. Y.V.R.K. Prasad, N. Ravichandran, Bull. Mater. Sci. 14, 1241–1248 (1991)

    CAS  Google Scholar 

  8. D.L. Holt, Acta Metall. 13, 39–40 (1965)

    CAS  Google Scholar 

  9. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, A.D. Rollett, Mater. Sci. Eng. A 238(2), 219–274 (1997)

    Google Scholar 

  10. M. Hradilová, F. Montheillet, A. Fraczkiewicz, C. Desrayaud, P. Lejček, Mater. Sci. Eng. A 579, 209–216 (2013)

    Google Scholar 

  11. R.P. Beck, Recl. Trav. Chim. Pays-Bas 41, 353–399 (1922)

    CAS  Google Scholar 

  12. A.A. Nayeb-Hashemi, J.B. Clark, Bull. Alloy Phase Diagr. 6, 434–439 (1985)

    CAS  Google Scholar 

  13. Y.B. Kang, J. Jeong, H.O. Sang, Comput. Coupling Phase Diagr. Thermochem. 46, 168–175 (2014)

    CAS  Google Scholar 

  14. Q. Gao, Y. Du, D. Zhao, A. Wang, J. Wang, S. Liu, Y. Ouyang, Comput. Coupling Phase Diagr. Thermochem. 37, 137–144 (2012)

    CAS  Google Scholar 

  15. J. Zhao, K. Yu, Y. Hu, S. Li, X. Tan, F. Chen, Z. Yu, Electrochim. Acta 56, 8224–8231 (2011)

    CAS  Google Scholar 

  16. Y. Geng, R. Wang, C. Peng, Trans. Nonferrous Met. Soc. China 23, 2650–2656 (2013)

    Google Scholar 

  17. Y. Feng, R.C. Wang, C.Q. Peng, Corrosion 67, 1–6 (2011)

    Google Scholar 

  18. D. Wu, L. Ouyang, C. Wu, H. Wang, J. Liu, L. Sun, M. Zhu, J. Alloys Compd. 642, 180–184 (2015)

    CAS  Google Scholar 

  19. D.O. Flamini, S.B. Saidman, J.B. Bessone, Corros. Sci. 48, 1413–1425 (2006)

    CAS  Google Scholar 

  20. Y. Feng, R. Wang, K. Yu, C. Peng, J. Zhang, C. Zhang, J. Alloys Compd. 473, 215–219 (2009)

    CAS  Google Scholar 

  21. Y. Feng, R.C. Wang, C.Q. Peng, N. Wang, Trans. Nonferrous Met. Soc. China 19, 154–159 (2009)

    CAS  Google Scholar 

  22. Y. Feng, R.C. Wang, C.Q. Peng, H.P. Tang, H.Y. Liu, Prog. Nat. Sci. Mater. Int. 21, 73–79 (2011)

    Google Scholar 

  23. M. Mohedano, C. Blawert, K.A. Yasakau, R. Arrabal, E. Matykina, B. Mingo, N. Scharnagl, M.G. Ferreira, M.L. Zheludkevich, Mater. Charact. 128, 85–99 (2017)

    CAS  Google Scholar 

  24. J. Kubásek, D. Vojtěch, D. Dvorský, Int. J. Mater. Res. 107, 459–471 (2016)

    Google Scholar 

  25. J. Kubásek, D. Vojtěch, J. Lipov, T. Ruml, Mater. Sci. Eng. C 33, 2421–2432 (2013)

    Google Scholar 

  26. H.B. Liu, G.H. Qi, Y.T. Ma, H. Hao, F. Jia, S.H. Ji, H.Y. Zhang, X.G. Zhang, Mater. Sci. Eng. A 526, 7–10 (2009)

    Google Scholar 

  27. Q. Dong, Z. Luo, H. Zhu, L.Y. Wang, T. Ying, Z.H. Jin, D.J. Li, W.J. Ding, X.Q. Zeng, J. Mater. Sci. Technol. 34, 1773–1780 (2018)

    Google Scholar 

  28. C. Wang, H.Y. Zhang, H.Y. Wang, G.J. Liu, Q.C. Jiang, Scr. Mater. 69, 445–448 (2013)

    CAS  Google Scholar 

  29. J. Zhang, Y.C. Dou, G.B. Liu, Z.X. Guo, Comput. Mater. Sci. 79, 564–569 (2013)

    CAS  Google Scholar 

  30. S.Q. Zhu, H.G. Yan, J.H. Chen, Y.Z. Wu, J.Z. Liu, J. Tian, Scr. Mater. 63, 985–988 (2010)

    CAS  Google Scholar 

  31. E.I. Poliak, J.J. Jonas, Acta Mater. 44, 127–136 (1996)

    CAS  Google Scholar 

  32. X. Rao, Y. Wu, X. Pei, Y. Jing, L. Luo, Y. Liu, J. Lu, Mater. Sci. Eng. A 754, 112–120 (2019)

    CAS  Google Scholar 

  33. W. Wang, L. Ma, S. Chai, W. Zhang, W. Chen, Y. Feng, G. Cui, Mater. Sci. Eng. A 730, 162–167 (2018)

    CAS  Google Scholar 

  34. Z.P. Yu, Y.H. Yan, J. Yao, C. Wang, M. Zha, X.Y. Xu, Y. Liu, H.Y. Wang, Q.C. Jiang, J. Alloys Compd. 744, 211–219 (2018)

    CAS  Google Scholar 

  35. C.Q. Li, D.K. Xu, S. Yu, L.Y. Sheng, E.H. Han, J. Mater. Sci. Technol. 33, 475–480 (2018)

    Google Scholar 

  36. A.A. Luo, R.K. Mishra, A.K. Sachdev, Scr. Mater. 64, 410–413 (2011)

    CAS  Google Scholar 

  37. G.H. Huang, D.D. Yin, J.W. Lu, H. Zhou, Y. Zeng, G.F. Quan, Q.D. Wang, Mater. Sci. Eng. A 720, 24–35 (2018)

    CAS  Google Scholar 

  38. K.V. Jata, A.K. Hopkins, R.J. Rioja, Mater. Sci. Forum 217–222, 647–652 (1996)

    Google Scholar 

  39. M. Mabuchi, K. Higashi, Acta Mater. 44, 4611–4618 (1996)

    CAS  Google Scholar 

  40. U.M. Chaudry, Y.S. Kim, K. Hamad, Mater. Lett. 238, 305–308 (2019)

    CAS  Google Scholar 

  41. H.Y. Wang, J. Rong, Z.Y. Yu, M. Zha, C. Wang, Z.Z. Yang, R.Y. Bu, Q.C. Jiang, Mater. Sci. Eng. A 697, 149–157 (2017)

    CAS  Google Scholar 

  42. S.W. Xu, S. Kamado, N. Matsumoto, T. Honma, Y. Kojima, Mater. Sci. Eng. A 527, 52–60 (2009)

    Google Scholar 

  43. S.Q. Zhu, S.P. Ringer, Acta Mater. 144, 365–375 (2018)

    CAS  Google Scholar 

  44. O. Sitdikov, R. Kaibyshev, Mater. Trans. 42, 1928–1937 (2001)

    CAS  Google Scholar 

  45. H.P. Chan, C.S. Oh, S. Kim, Mater. Sci. Eng. A 542, 127–139 (2012)

    Google Scholar 

  46. G. Aggarwal, Acta Mater. 49, 1199–1207 (2001)

    Google Scholar 

  47. O. Sitdikov, R. Kaibyshev, Mater. Trans. 42, 1928–1937 (2001)

    CAS  Google Scholar 

  48. S.Q. Zhu, H.G. Yan, X.Z. Liao, S.J. Moody, G. Sha, Y.Z. Wu, S.P. Ringer, Acta Mater. 82, 344–355 (2015)

    CAS  Google Scholar 

  49. J. Wu, J. Chen, H. Yan, X.W. Xia, B. Su, L. Yu, G.S. Liu, M. Song, J. Mater. Sci. 52, 1–10 (2017)

    Google Scholar 

  50. A. Ghaderi, M.R. Barnett, Acta Mater. 59, 7824–7839 (2011)

    CAS  Google Scholar 

  51. M.A. Meyers, O. Vöhringer, V.A. Lubarda, Acta Mater. 49, 4025–4039 (2001)

    CAS  Google Scholar 

  52. H.T. Wang, N.R. Tao, K. Lu, Acta Mater. 60, 4027–4040 (2012)

    CAS  Google Scholar 

  53. Y. Zhang, N.R. Tao, K. Lu, Acta Mater. 59, 6048–6058 (2011)

    CAS  Google Scholar 

  54. D.C. Bufford, Y.M. Wang, Y. Liu, MRS Bull. 41, 286–291 (2016)

    CAS  Google Scholar 

  55. J.P. Liebig, S. Krauß, M. Göken, B. Merle, Acta Mater. 154, 261–272 (2018)

    CAS  Google Scholar 

  56. I.J. Beyerlein, X. Zhang, A. Misra, Annu. Rev. Mater. Sci. 44, 329–363 (2014)

    CAS  Google Scholar 

  57. Z.W. Yu, A.T. Tang, J.J. He, Z.Y. Gao, J. She, J.G. Liu, F.S. Pan, Mater. Charact. 136, 310–317 (2018)

    CAS  Google Scholar 

  58. C. Chen, J. Chen, H. Yan, B. Su, M. Song, S.Q. Zhu, Mater. Des. 100, 58–66 (2016)

    CAS  Google Scholar 

  59. L.F. Wang, E. Mostaed, X.Q. Cao, G.S. Huang, A. Fabrizi, F. Bonollo, C.Z. Chi, M. Vedani, Mater. Des. 89, 1–8 (2016)

    Google Scholar 

  60. M.J. Starink, S.C. Wang, Acta Mater. 51, 5131–5150 (2003)

    CAS  Google Scholar 

  61. H. Ding, X. Shi, Y. Wang, G. Cheng, S. Kamado, Mater. Sci. Eng. A 645, 196–204 (2015)

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant Nos. 51571089 and 51871093).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jihua Chen or Hongge Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Chen, J., Yan, H. et al. Effects of Ga Content on Dynamic Recrystallization and Mechanical Properties of High Strain Rate Rolled Mg–Ga Alloys. Met. Mater. Int. 26, 747–759 (2020). https://doi.org/10.1007/s12540-019-00358-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00358-4

Keywords

Navigation