Skip to main content
Log in

Effect of Multidirectional Forging on the Microstructures and Mechanical Properties of the Al–Mg–Si Alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Due to its exceptional machinability, welding prowess, and resistance to corrosion, the lightweight 6061 Al–Mg–Si alloy finds extensive utilization within the realms of aerospace and transportation. Multi-directional forging process is a sever plastic deformation (SPD) process. In this investigation, a pristine 6061 industrial ingot was forged in multiple directions at 530 ℃ via four-upsetting and three-cross-stretching (4U3CS), seven-upsetting and six-cross-stretching (7U6CS), two different forging processes. T6 aging treatment is applied to the forged components after the pre-forging preparation. The investigation delved into the microstructural evolution during the process, alongside the mechanical performance across three orthogonal directions. The research findings underscore that, in comparison to 4U3CS, the cumulative deformation in 7U6CS fosters lattice distortion and defect formation, thereby promoting the dissolution of metastable phases and augmenting the driving force for precipitation during aging. Consequently, the tensile and yield strengths of the specimens increased by approximately 10 MPa across all three directions. Furthermore, 7U6CS retains a greater reservoir of deformation energy, acting as a catalyst for dynamic recrystallization, consequently, this process facilitates the enlargement of recrystallization nucleation regions and improves the degree of recrystallization uniformity. Following hot forging and subsequent T6 aging treatment, the disparity in grain size became more pronounced, diminishing from 418 to 208 μm. Coarse intergranular precipitates emerged as the primary origin of transgranular cracking. Post-T6 aging, the elongation rate of the specimens decreased across all three directions, accompanied by a substantial elevation in tensile and yield strengths. Notably, the mechanical performance of the 7U6CS-T6 specimen reached its zenith in the optimal direction, attaining values of 340 and 315 MPa for tensile strength and yield strength, respectively.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig.5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

The authors do not have permission to share data.

Abbreviations

MDF:

Multi-directional forging

SPD:

Sever plastic deformation

SSSS:

Supersaturated solid solution

ARB:

Accumulative roll-bonding

CR:

Cryocooling

HTP:

High-pressure torsion

ECAP:

Equal-channel angular pressing

CEC:

Cyclic extrusion compression

4U3CS:

Four-upsetting and three-cross-stretching

7U6CS:

Seven-upsetting and six-cross-stretching

BN:

Boron nitride

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

XRD:

X-ray diffraction

HTDDM:

High temperature diffusion dissolution mechanism

LPDRM:

Large plastic deformation refining mechanism

DRV:

Dynamic recrystallization

DDRX:

Discontinuous dislocation recovery and recrystallization

PSN:

Particles stimulate nucleation

CDRX:

Continuous dynamic recrystallization

SRX:

Static recrystallization

HAGB:

High-angle grain boundaries

References

  1. A. Bauer, J.P. Rolland, Visual space assessment of two all-reflective, freeform, optical see-through head-worn displays. Opt. Express 22(11), 13155–13163 (2004). https://doi.org/10.1364/OE.22.013155

    Article  Google Scholar 

  2. Y.M. Wang, Z.X. Li, X.L. Liu, F.Z. Fang, X.D. Zhang, Freeform-objective Chernin multipass cell: application of a freeform surface on assembly simplification. Appl. Opt. 56(30), 8541–8546 (2017). https://doi.org/10.1364/AO.56.008541

    Article  CAS  PubMed  Google Scholar 

  3. L.Y. Yuan, Z.P. He, G. Lv, Y.M. Wang, C.L. Li, J.N. Xie, J.Y. Wang, Optical design, laboratory test, and calibration of airborne long wave infrared imaging spectrometer. Opt. Express 25(19), 22440–22454 (2017). https://doi.org/10.1364/OE.25.022440

    Article  CAS  PubMed  Google Scholar 

  4. Z.X. Li, X.L. Liu, F.Z. Fang, X.D. Zhang, Z. Zeng, L.L. Zhu, Y. Ning, Integrated manufacture of a freeform off-axis multi-reflective imaging system without optical alignment. Opt. Express 26(6), 7625–7637 (2018). https://doi.org/10.1364/OE.26.007625

    Article  CAS  PubMed  Google Scholar 

  5. Voluntary reports of IAI member and non-member companies, primary aluminum production. https://international-aluminium.org/statistics/primary-aluminium-production. Accessed 11 March 2024

  6. Howard precision metals Inc, applications of 6061 aluminum alloy. https://www.howardprecision.com/applications-of-6061-aluminum-alloy

  7. M.A. Wahid, A.N. Siddiquee, Z.A. Khan, Aluminum alloys in marine construction: characteristics, application, and problems from a fabrication viewpoint. Mar. Syst. Ocean Technol. 15, 70–80 (2020). https://doi.org/10.1007/s40868-019-00069-w

    Article  Google Scholar 

  8. R. Vissers, M.A. van Huis, J. Jansen, H.W. Zandbergen, C.D. Marioara, S.J. Andersen, The crystal structure of the β′ phase in Al–Mg–Si alloys. Acta Mater. 55(11), 3815–3823 (2007). https://doi.org/10.1016/j.actamat.2007.02.032

    Article  CAS  Google Scholar 

  9. C.D. Marioara, H. Nordmark, S.J. Andersen, R. Holmestad, Post-β″ phases and their influence on microstructure and hardness in 6xxx Al–Mg–Si alloys. J. Mater. Sci. 41(2), 471–478 (2006). https://doi.org/10.1007/s10853-005-2470-1

    Article  CAS  Google Scholar 

  10. R.N. Harsha, V. Mithun Kulkarni, B. Satish Babu, Severe plastic deformation—a review. Mater. Today Proc. 5(10), 22340–22349 (2018). https://doi.org/10.1016/j.matpr.2018.06.600

    Article  Google Scholar 

  11. M. Kasaeian-Naeini, M. Sedighi, R. Hashemi, Severe plastic deformation (SPD) of biodegradable magnesium alloys and composites: a review of developments and prospects. J. Magnes. Alloys 10(4), 938–955 (2022). https://doi.org/10.1016/j.jma.2021.11.006

    Article  CAS  Google Scholar 

  12. H.J. Roven, H. Nesboe, J.C. Werenskiold, T. Seibert, Mechanical properties of aluminium alloys processed by SPD: comparison of different alloy systems and possible product areas. Mater. Sci. Eng. A 410, 426–429 (2005). https://doi.org/10.1016/j.msea.2005.08.112

    Article  CAS  Google Scholar 

  13. E.M. Zayed, M. Shazly, A. EI-Sabbagh, N.A. EI-Mahallawy, Deformation behavior and properties of severe plastic deformation techniques for bulk materials: a review. Heliyon 9, e16700 (2023). https://doi.org/10.1016/j.heliyon.2023.e16700

    Article  PubMed  PubMed Central  Google Scholar 

  14. H.L. Yu, L.H. Su, C. Lu, K. Tieu, H.J. Li, J.T. Li, A. Godbole, C. Kong, Enhanced mechanical properties of ARB-processed aluminum alloy 6061 sheets by subsequent asymmetric cryorolling and ageing. Mater. Sci. Eng. A 674, 256–261 (2016). https://doi.org/10.1016/j.msea.2016.08.003

    Article  CAS  Google Scholar 

  15. N. El Mahallawy, A. Fathy, W. Abdelaziem, M. Hassan, Microstructure evolution and mechanical properties of Al/Al-12%Si multilayer processed by accumulative roll bonding (ARB). Mater. Sci. Eng. A 647, 127–135 (2015). https://doi.org/10.1016/j.msea.2015.08.064

    Article  CAS  Google Scholar 

  16. S. Krymskiy, O. Sitdikov, E. Avtokratova, M. Markushey, 2024 aluminum alloy ultrahigh-strength sheet due to two-level nanostructuring under cryorolling and heat treatment. Trans. Nonferrous Metals Soc. China 30(1), 14–26 (2020). https://doi.org/10.1016/S1003-6326(19)65176-9

    Article  CAS  Google Scholar 

  17. P. Bazarnik, B. Romelczyk, Y. Huang, M. Lewandowska, T.G. Langdon, Effect of applied pressure on microstructure development and homogeneity in an aluminium alloy processed by high-pressure torsion. J. Alloy. Compd. 688, 736–745 (2016). https://doi.org/10.1016/j.jallcom.2016.07.149

    Article  CAS  Google Scholar 

  18. E. Damavandi, S. Nourouzi, S.M. Rabiee, R. Jamaati, Effect of ECAP on microstructure and tensile properties of A390 aluminum alloy. Trans. Nonferrous Metals Soc. China 29(5), 931–940 (2019). https://doi.org/10.1016/S1003-6326(19)65002-8

    Article  CAS  Google Scholar 

  19. A. Ghosh, M. Ghosh, K. Gudimetla, R. Kalsar, L.A.I. Kestens, C.S. Kondaveeti, B.S. Pugazhendhi, B.S. Pugazhendhi, B. Ravisankar, Development of ultrafine grained Al–Zn–Mg–Cu alloy by equal channel angular pressing: microstructure, texture and mechanical properties. Arch. Civ. Mech. Eng. 20, 7 (2020). https://doi.org/10.1007/s43452-019-0003-y

    Article  Google Scholar 

  20. A. Ghosh, M. Ghosh, Effect of heat treatment and severe plastic deformation on microstructure and texture evolution of 7075 alloy. Mater. Today Proc. 33(8), 5239–58242 (2020). https://doi.org/10.1016/j.matpr.2020.02.947

    Article  CAS  Google Scholar 

  21. Y. Tian, H. Huang, G.Y. Yuan, W.J. Ding, Microstructure evolution and mechanical properties of quasicrystal-reinforced Mg–Zn–Gd alloy processed by cyclic extrusion and compression. J. Alloy. Compd. 626, 42–48 (2015). https://doi.org/10.1016/j.jallcom.2014.11.167

    Article  CAS  Google Scholar 

  22. G. El-Garhy, N.E. Mahallawy, M.K. Shoukry, Effect of grain refining by cyclic extrusion compression (CEC) of Al-6061 and Al-6061/SiC on wear behavior. J. Market. Res. 12, 1886–1897 (2021). https://doi.org/10.1016/j.jmrt.2021.03.114

    Article  CAS  Google Scholar 

  23. G.A. Abd El Raouf, N. El Mahallawy, M.K. Shoukry, The cyclic extrusion behavior of severe plastic deformation (CEC) of aluminum alloy 6061. Key Eng. Mater. 835, 186–192 (2020). https://doi.org/10.4028/www.scientific.net/KEM.835.186

    Article  Google Scholar 

  24. T. Sakai, H. Miura, A. Goloborodko, O. Sidikov, Continuous dynamic recrystallization during the transient severe deformation of aluminum alloy 7475. Acta Mater. 57(1), 153–162 (2009). https://doi.org/10.1016/j.actamat.2008.09.001

    Article  CAS  Google Scholar 

  25. Q.F. Zhu, L. Li, C.Y. Ban, Z.H. Zhao, Y.B. Zuo, J.Z. Cui, Structure uniformity and limits of grain refinement of high purity aluminum during multi-directional forging process at room temperature. Trans. Nonferrous Metals Soc. China 24(5), 1301–1306 (2014). https://doi.org/10.1016/S1003-6326(14)63192-7

    Article  CAS  Google Scholar 

  26. M.R. Jandaghi, H. Pouraliakbar, M.K.G. Shiran, G. Khalaj, M. Shirazi, On the effect of non-isothermal annealing and multi-directional forging on the microstructural evolutions and correlated mechanical and electrical characteristics of hot-deformed Al–Mg alloy. Mater. Sci. Eng. A 657, 431–440 (2016). https://doi.org/10.1016/j.msea.2016.01.056

    Article  CAS  Google Scholar 

  27. W.L. Gao, J. Xu, J. Teng, Z. Lu, Microstructure characteristics and mechanical properties of a 2A66 Al–Li alloy processed by continuous repetitive upsetting and extrusion. J. Mater. Res. 31(16), 2506–2515 (2016). https://doi.org/10.1557/jmr.2016.235

    Article  CAS  Google Scholar 

  28. A.A. Kishchik, S.A. Aksenov, M.S. Kishchik, D.O. Demin, A.Y. Churyumov, A.V. Mikhaylovskaya, The microstructure and mechanical properties of Al–Mg–Fe–Ni–Zr–Sc alloy after isothermal multidirectional forging. Phys. Met. Metall. 124(6), 623–631 (2023). https://doi.org/10.1134/S0031918X23600665

    Article  CAS  Google Scholar 

  29. O.S. Sitdikov, E.V. Avtokratova, O.E. Mukhametdinova, R.N. Garipova, M.V. Markushev, Effect of the size of Al3(Sc, Zr) precipitates on the structure of multi-directionally isothermally forged Al–Mg–Sc–Zr alloy. Phys. Met. Metallogr. 118(12), 1215–1224 (2017). https://doi.org/10.1134/S0031918X17120122

    Article  CAS  Google Scholar 

  30. J.G. Tang, Y.P. Yi, H.L. He, S.Q. Huang, J.J. Zhang, F. Dong, Hot deformation behavior and microstructural evolution of the Al–Cu–Li alloy: a study with processing map. J. Alloy. Compd. 934, 167755 (2023). https://doi.org/10.1016/j.jallcom.2022.167755

    Article  CAS  Google Scholar 

  31. W.X. Zhang, H.L. He, Y.P. Yi, S.Q. Huang, Influence of thermomechanical processing on coarse particles, grain structure, and mechanical properties of Al–Cu alloy rings. J. Market. Res. 22, 1136–1150 (2023). https://doi.org/10.1016/j.jmrt.2022.11.171

    Article  CAS  Google Scholar 

  32. F. Dong, Y.P. Yi, S.Q. Huang, H.L. He, J.W. Huang, C.G. Wang, K. Huang, Refinement of second-phase particles and grain structures of 2219 Al–Cu alloy forgings using an improved thermomechanical treatment process. Mater. Charact. 173, 110927 (2021). https://doi.org/10.1016/j.matchar.2021.110927

    Article  CAS  Google Scholar 

  33. X.C. Mao, Y.P. Yi, S.Q. Huang, W.F. Guo, H.L. He, J.R. Que, Effects of warm saddle forging deformation on the reduction of second-phase particles and control of the three-dimensional mechanical properties of 2219 aluminum alloy rings. Mater. Sci. Eng. A 804, 140737 (2021). https://doi.org/10.1016/j.msea.2021.140737

    Article  CAS  Google Scholar 

  34. J.L. Zhang, H. Xie, Z.L. Lu, Y. Ma, S.P. Tao, K. Zhao, Microstructure evolution and mechanical properties of AZ80 magnesium alloy during high-pass multi-directional forging. Results Phys. 10, 967–972 (2018). https://doi.org/10.1016/j.rinp.2018.08.028

    Article  Google Scholar 

  35. Y. Liu, X.S. Zhao, J. Li, L. Bhatta, K.G. Luo, C. Kong, H.L. Yu, Mechanical properties of rolled and aged AA6061 sheets at room-temperature and cryogenic environments. J. Alloy. Compd. 860, 158449 (2021). https://doi.org/10.1016/j.jallcom.2020.158449

    Article  CAS  Google Scholar 

  36. A.C.U. Rao, V. Vasu, M. Govindaraju, K.V.S. Srinadh, Stress corrosion cracking behaviour of 7xxx aluminum alloys: a literature review. Trans. Nonferrous Metals Soc. China 26(6), 1447–1471 (2016). https://doi.org/10.1016/S1003-6326(16)64220-6

    Article  CAS  Google Scholar 

  37. F.X. Song, X.M. Zhang, S.D. Liu, Q. Tan, D.F. Li, The effect of quench rate and overageing temper on the corrosion behaviour of AA7050. Corros. Sci. 78, 276–286 (2014). https://doi.org/10.1016/j.corsci.2013.10.010

    Article  CAS  Google Scholar 

  38. M.J. Yang, A. Orekhov, Z.Y. Hu, M. Feng, S.B. Jin, G. Sha, L. Kai, V. Samaee, M. Song, Y. Du, G. Van Tendeloo, D. Schryvers, Shearing and rotation of β ″and βʹ precipitates in an Al-Mg-Si alloy under tensile deformation: in-situ and ex-situ studies. Acta Mater. 220, 117310 (2021). https://doi.org/10.1016/j.actamat.2021.117310

    Article  CAS  Google Scholar 

  39. J. Zhang, C. Wang, Y. Zhang, Y.L. Deng, Effects of creep aging upon Al–Cu–Li alloy: strength, toughness and microstructure. J. Alloy. Compd. 764, 452–459 (2018). https://doi.org/10.1016/j.jallcom.2018.06.103

    Article  CAS  Google Scholar 

  40. M. Wang, L.P. Huang, W.S. Liu, Y.Z. Ma, B.Y. Huang, Influence of cumulative strain on microstructure and mechanical properties of multi-directional forged 2A14 aluminum alloy. Mater. Sci. Eng. A 674, 40–51 (2016). https://doi.org/10.1016/j.msea.2016.07.072

    Article  CAS  Google Scholar 

  41. J.J. Zhang, Y.P. Yi, S.Q. Huang, X.C. Mao, H.L. He, J.G. Tang, W.F. Guo, F. Dong, Dynamic recrystallization mechanisms of 2195 aluminum alloy during medium/high temperature compression deformation. Mater. Sci. Eng. A 804, 140650 (2021). https://doi.org/10.1016/j.msea.2020.140650

    Article  CAS  Google Scholar 

  42. J. Gubicza, N.Q. Chinh, Z. Horita, T.G. Langdon, Effect of Mg addition on microstructure and mechanical properties of aluminum. Mater. Sci. Eng. A 387, 55–59 (2004). https://doi.org/10.1016/j.msea.2004.03.076

    Article  CAS  Google Scholar 

  43. W.J. Kim, J.Y. Wang, Microstructure of the post-ECAP aging processed 6061 Al alloys. Mater. Sci. Eng. A 464(1–2), 23–27 (2007). https://doi.org/10.1016/j.msea.2007.03.074

    Article  CAS  Google Scholar 

  44. M.B. Bever, D.L. Holt, A.L. Titchener, The stored energy of cold work. Prog. Met. Phys. 7, 247–338 (1973). https://doi.org/10.1016/0079-6425(73)90001-7

    Article  Google Scholar 

  45. Z. Wen, J.Y. Wen, B. Wang, J.M. Zeng, The effects of Mn addition on microstructure and hardness in 6061 aluminium alloy. Pop Sci. Technol. 15(11), 3 (2013). https://doi.org/10.3969/j.issn.1008-1151.2013.11.011

    Article  Google Scholar 

  46. B. Ke, Effects of Mn on microstructures and mechanical properties of 6061 aluminum Alloy, Central South University (2014)

  47. C.D. Marioara, S.J. Andersen, T.N. Stene, H. Hasting, J. Walmsley, A.T.J. Van Helvoort, R. Holmestas, The effect of Cu on precipitation in Al–Mg–Si alloys. Phil. Mag. 87(23), 3385–3413 (2007). https://doi.org/10.1080/14786430701287377

    Article  CAS  Google Scholar 

  48. M.H. Shaeri, M. Shaeri, M. Ebrahimi, M.T. Salehi, S.H. Seyyedein, Effect of ECAP temperature on microstructure and mechanical properties of Al–Zn–Mg–Cu alloy. Prog. Nat. Sci. Mater. Int. 26(2), 182–191 (2016). https://doi.org/10.1016/j.pnsc.2016.03.003

    Article  CAS  Google Scholar 

  49. X.F. Xu, Y.G. Zhao, X.D. Wang, Y.Y. Zhang, Y.H. Ning, The rapid age strengthening induced by Ag additions in 7075 aluminum alloy. Mater. Sci. Eng. A 648, 367–370 (2015). https://doi.org/10.1016/j.msea.2015.09.044

    Article  CAS  Google Scholar 

  50. K.K. Ma, H.M. Wen, T. Hu, T.D. Tipping, D. Isheim, D.N. Seidman, E.J. Lavernia, J.M. Schoenung, Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater. 62, 141–155 (2014). https://doi.org/10.1016/j.actamat.2013.09.042

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Joint Funds of the National Natural Science Foundation of China (Grant No. 52375398), the Major Projects of Scientific and Technology Innovation of Hunan Province (Grant No. 2021GK1040).

Author information

Authors and Affiliations

Authors

Contributions

Juncheng Mao: investigation, methodology, writing original draft. Youping Yi: conceptualization, funding acquisition, supervision. Hailin He: writing—review & editing, data acquisition. Shiquan Huang: Validation, methodology. Yunfan Fu: data curation, investigation. Jiaguo Tang: visualization.

Corresponding authors

Correspondence to Youping Yi or Shiquan Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, J., Yi, Y., Huang, S. et al. Effect of Multidirectional Forging on the Microstructures and Mechanical Properties of the Al–Mg–Si Alloy. Met. Mater. Int. (2024). https://doi.org/10.1007/s12540-024-01675-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12540-024-01675-z

Keywords

Navigation