Skip to main content
Log in

Influence of different deformation processing on the AZ31 magnesium alloy sheets

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

AZ31 magnesium alloy sheets were processed by normal rolling (NR), one-pass equal channel angular rolling (1P-ECAR), and cross equal channel angular rolling (C-ECAR) at 400 °C on a die with 105 ° channel angle. The microstructure, texture, and tensile properties of sheets were measured. The results show that ECAR processing can weaken the basal plane texture, thus obviously improve the mechanical properties. The yield ratio σsb decreases and strain hardening exponent n increases along rolling direction (RD) during ECAR, which means that the uniform plastic formability is enhanced. After C-ECAR, the mechanical properties along both the RD and transverse direction (TD) are improved. Different twinning types, fine \( \left\{ {10\overline{1} 1} \right\} \) contraction twinning in the NRed sheets and coarse \( \left\{ {10\overline{1} 2} \right\} \) extension twinning in the ECARed sheets, were observed. The easier activation of \( \left\{ {10\overline{1} 2} \right\} \) twinning and basal 〈a〉 slip leads to the lower yield strength of the ECARed sheets. Dynamic recrystallization (DRX) during the rolling process has great effect on the microstructure of the as-deformed and annealed sheets. The annealed C-ECARed sheets have significant finer and homogenous grains than the annealed NRed sheets, which is attributed to the rarely DRX process during ECAR. The average grain sizes of the annealed C-ECARed samples and NRed samples are 14 and 24 μm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lee BH, Reddy NS, Yeom JT, Lee CS (2007) J Mater Process Technol 187–188:766

    Article  Google Scholar 

  2. Pérez-Prado MT, del Valle JA, Ruano OA (2005) Mater Lett 59:3299

    Article  Google Scholar 

  3. Wang SC, Chou CP (2008) J Mater Process Technol 197:116

    Article  CAS  Google Scholar 

  4. Garcés G, Müller A, Oñorbe E, Pérez P, Adeva P (2008) J Mater Process Technol 206:99

    Article  Google Scholar 

  5. Suwas S, Gottstein G, Kumar R (2007) Mater Sci Eng A 471:1

    Article  Google Scholar 

  6. Nagasekhar AV, Tick-Hon Y, Seow HP (2007) J Mater Process Technol 192–193:449

    Article  Google Scholar 

  7. Kai M, Horita Z, Langdon TG (2008) Mater Sci Eng A 488:117

    Article  Google Scholar 

  8. Chen YJ, Wang QD, Roven HJ, Karlsen M, Yu YD, Liu MP, Hjelen J (2008) J Alloy Compd 462:192

    Article  CAS  Google Scholar 

  9. Pérez-Prado MT, del Valle JA, Ruano OA (2004) Scripta Mater 51:1093

    Article  Google Scholar 

  10. Guo Q, Yan HG, Chen ZH, Zhang H (2006) Trans Nonferrous Met Soc China 16:922

    Article  CAS  Google Scholar 

  11. Rajinikanth V, Arora G, Narasaiah N, Venkateswarlu K (2008) Mater Lett 62:301

    Article  CAS  Google Scholar 

  12. Matsubara K, Miyahara Y, Horita Z, Langdon TG (2005) Acta Mater 51:3073

    Article  Google Scholar 

  13. Watanabe H, Mukai T, Ishikawa K, Higashi K (2002) Scripta Mater 46:851

    Article  CAS  Google Scholar 

  14. Lee JC, Seok HK, Han JH, Chung YH (2001) Mater Res Bull 36:997

    Article  CAS  Google Scholar 

  15. Lee JC, Seok HK, Suh JY (2002) Acta Mater 50:4005

    Article  CAS  Google Scholar 

  16. Nam CY, Han JH, Chung YH, Shin MC (2003) Mater Sci Eng A 347:253

    Article  Google Scholar 

  17. Huh MY, Lee JP, Lee JC (2004) Mater Sci Tech 20:819

    Article  CAS  Google Scholar 

  18. Park JW, Kim JW, Chung YH (2004) Scripta Mater 51:181

    Article  CAS  Google Scholar 

  19. Kang HG, Lee JP, Huh M, Engler O (2008) Mater Sci Eng A 486:470

    Article  Google Scholar 

  20. Cheng YQ, Chen ZH, Xia WJ, Zhou T (2007) J Mater Process Technol 184:97

    Article  CAS  Google Scholar 

  21. Chen ZH, Cheng YQ, Xia WJ (2007) Mater Manuf Process 22:51

    Article  Google Scholar 

  22. Cheng YQ, Chen ZH, Xia WJ (2007) J Mater Sci 42:3552. doi:https://doi.org/10.1007/s10853-007-1559-0

    Article  CAS  Google Scholar 

  23. Cheng YQ, Chen ZH, Xia WJ (2007) Mater Charact 58:617

    Article  CAS  Google Scholar 

  24. Wang YN, Huang JC (2007) Acta Mater 55:897

    Article  CAS  Google Scholar 

  25. Chino Y, Kimura K, Hakamada M, Mabuchi M (2008) Mater Sci Eng A 485:311

    Article  Google Scholar 

  26. Agnew SR, Horton JA, Lillo TM, Brown DW (2004) Scripta Mater 50:377

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research described in this paper was supported by the Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-06-0701), the Doctoral Program of Higher Education of China (20070532087) and the Natural Science Foundation Project of China (50844034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Ge Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, SQ., Yan, HG., Xia, WJ. et al. Influence of different deformation processing on the AZ31 magnesium alloy sheets. J Mater Sci 44, 3800–3806 (2009). https://doi.org/10.1007/s10853-009-3513-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3513-9

Keywords

Navigation