Skip to main content
Log in

Analysis of phase, microstructure, and mechanical characteristics of selective laser melted AlSi10Mg alloy after post-heat treatment

  • Full Research Article
  • Published:
Progress in Additive Manufacturing Aims and scope Submit manuscript

Abstract

The current study focuses on the effect of a post-heat treatment such as solutionizing at 520 °C for 0.5–2.5 h followed by artificial ageing at 165 °C for 2–14 h (T6-like heat treatment) on the microstructure and mechanical properties of selective laser melted (SLM) AlSi10Mg alloy. XRD & DSC analysis shows the Al, Si, and Mg2Si phases present in as-built and heat-treated conditions, which are well correlated with the Thermo-Calc simulation results. The density of as-built AlSi10Mg was 2.66 g/cm3, and it decreased to 2.63 g/cm3 after solutionization, and after artificial ageing, it further decreased to 2.61 g/cm3 due to the lattice strains. As-built sample microstructure consists of fine α-Al cells containing ultra-fine Si particles surrounded by a eutectic Si network due to the high heating and cooling rates involved in SLM processes. After solutionizing, the eutectic Si network structure disappeared by the thermally activated diffusion process forming Si particles in the aluminium matrix. Vickers hardness for as-built condition was 126.6 HV, and after solutionization for 30 min, it decreased to 95.6 HV. However, after subsequent artificial ageing (for 12 h), the hardness value again increased to 119.7 HV. As-built condition showed absorbed impact energy of 8 J and it increased to 17.33 J during solutionization for 0.5 h and again decreased to 9.33 J after subsequent artificial ageing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors declare that the data supporting and data generated or analysed during this study are included in this published article.

References

  1. Wong KV, Hernandez A (2012) A review of additive manufacturing. ISRN Mechanical Eng 2012(2012):1–10. https://doi.org/10.5402/2012/208760

    Article  Google Scholar 

  2. Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23(6):1917–1928. https://doi.org/10.1007/s11665-014-0958-z

    Article  Google Scholar 

  3. Dilberoglu UM, Gharehpapagh B, Yaman U, Dolen M (2017) The role of additive manufacturing in the era of industry 4.0. Procedia Manuf 11:545–554. https://doi.org/10.1016/j.promfg.2017.07.148

  4. Sefene EM (2022) State-of-the-art of selective laser melting process: a comprehensive review. J Manuf Syst 63:250–274. https://doi.org/10.1016/j.jmsy.2022.04.002

    Article  Google Scholar 

  5. Nagarajan B, Hu Z, Song X, Zhai W, Wei J (2019) Development of micro selective laser melting: the state of the art and future perspectives. Engineering 5(4):702–720. https://doi.org/10.1016/j.eng.2019.07.002

    Article  Google Scholar 

  6. Olakanmi EO, Cochrane RF, Dalgarno KW (2015) A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders. Prog Mater Sci 74:401–477

    Article  Google Scholar 

  7. Aboulkhair NT, Simonelli M, Parry L, Ashcroft I, Tuck C, Hague R (2019) 3D printing of aluminium alloys: additive manufacturing of aluminium alloys using selective laser melting. Prog Mater Sci 106:100578. https://doi.org/10.1016/j.pmatsci.2019.100578

    Article  Google Scholar 

  8. Fox JC, Moylan SP, Lane BM (2016) Effect of process parameters on the surface roughness of overhanging structures in laser powder bed fusion additive manufacturing. Procedia CIRP 45:131–134. https://doi.org/10.1016/j.procir.2016.02.347

    Article  Google Scholar 

  9. Delcuse L, Bahi S, Gunputh U, Rusinek A, Wood P, Miguelez MH (2020) Effect of powder bed fusion laser melting process parameters, build orientation and strut thickness on porosity, accuracy and tensile properties of an auxetic structure in IN718 alloy. Addit Manuf 36. https://doi.org/10.1016/j.addma.2020.101339

  10. Aversa A et al (2019) New aluminum alloys specifically designed for laser powder bed fusion: a review. Materials 12(7). https://doi.org/10.3390/ma12071007

  11. Read N, Wang W, Essa K, Attallah MM (2015) Selective laser melting of AlSi10Mg alloy: process optimisation and mechanical properties development. Mater Des 65:417–424. https://doi.org/10.1016/j.matdes.2014.09.044

    Article  Google Scholar 

  12. Yang P, Deibler LA, Bradley DR, Stefan DK, Carroll JD (2018) Microstructure evolution and thermal properties of an additively manufactured, solution treatable AlSi10Mg part. J Mater Res 33(23):4040–4052. https://doi.org/10.1557/jmr.2018.405

    Article  Google Scholar 

  13. Vora P, Mumtaz K, Todd I, Hopkinson N (2015) AlSi12 in-situ alloy formation and residual stress reduction using anchorless selective laser melting. Addit Manuf 7:12–19. https://doi.org/10.1016/j.addma.2015.06.003

    Article  Google Scholar 

  14. Brandau B, Da Silva A, Wilsnack C, Brueckner F, Kaplan AFH (2022) Absorbance study of powder conditions for laser additive manufacturing. Mater Des 216:110591. https://doi.org/10.1016/j.matdes.2022.110591

    Article  Google Scholar 

  15. Birol Y (2007) Microstructural evolution during annealing of a rapidly solidified Al-12Si alloy. J Alloys Compd 439(1–2):81–86. https://doi.org/10.1016/j.jallcom.2006.08.068

    Article  Google Scholar 

  16. Alghamdi F, Song X, Hadadzadeh A, Shalchi-Amirkhiz B, Mohammadi M, Haghshenas M (2020) Post heat treatment of additive manufactured AlSi10Mg: on silicon morphology, texture and small-scale properties. Mater Sci Eng, A 783:139296. https://doi.org/10.1016/j.msea.2020.139296

    Article  Google Scholar 

  17. Aboulkhair NT, Maskery I, Tuck C, Ashcroft I, Everitt NM (2016) The microstructure and mechanical properties of selectively laser melted AlSi10Mg: the effect of a conventional T6-like heat treatment. Mater Sci Eng, A 667:139–146. https://doi.org/10.1016/j.msea.2016.04.092

    Article  Google Scholar 

  18. Aboulkhair NT, Tuck C, Ashcroft I, Maskery I, Everitt NM (2015) On the precipitation hardening of selective laser melted AlSi10Mg. Metall Mater Trans A PhysMetall Mater Sci 46(8):3337–3341. https://doi.org/10.1007/s11661-015-2980-7

    Article  Google Scholar 

  19. Fousová M, Dvorský D, Michalcová A, Vojtěch D (2018) Changes in the microstructure and mechanical properties of additively manufactured AlSi10Mg alloy after exposure to elevated temperatures. Mater Charact 2017(137):119–126. https://doi.org/10.1016/j.matchar.2018.01.028

    Article  Google Scholar 

  20. Han Q, Jiao Y (2019) Effect of heat treatment and laser surface remelting on AlSi10Mg alloy fabricated by selective laser melting. Int J Adv Manuf Technol 102(9–12):3315–3324. https://doi.org/10.1007/s00170-018-03272-y

    Article  Google Scholar 

  21. Zhou Le et al (2018) Microstructure, precipitates and hardness of selectively laser melted AlSi10Mg alloy before and after heat treatment. Mater Charact 143:5–17

  22. Roth CC, Tancogne-Dejean T, Mohr D (2021) Plasticity and fracture of cast and SLM AlSi10Mg: High-throughput testing and modeling. Addit Manuf 43:101998. https://doi.org/10.1016/j.addma.2021.101998

    Article  Google Scholar 

  23. Yan Q, Song Bo, Shi Y (2020) Comparative study of performance comparison of AlSi10Mg alloy prepared by selective laser melting and casting. J Mater Sci Technol 41:199–208. https://doi.org/10.1016/j.jmst.2019.08.049

    Article  Google Scholar 

  24. Yu X, Wang L (2018) T6 heat-treated AlSi10Mg alloys additive-manufactured by selective laser melting. Procedia Manuf 15:1701–1707. https://doi.org/10.1016/j.promfg.2018.07.265

    Article  Google Scholar 

  25. Girelli L, Tocci M, Gelfi M, Pola A (2019) Study of heat treatment parameters for additively manufactured AlSi10Mg in comparison with corresponding cast alloy. Mater Sci Eng, A 739:317–328. https://doi.org/10.1016/j.msea.2018.10.026

    Article  Google Scholar 

  26. Wang LF et al (2018) Enhancement in mechanical properties of selectively laser-melted AlSi10Mg aluminum alloys by T6-like heat treatment. Mater Sci Eng, A 734:299–310. https://doi.org/10.1016/j.msea.2018.07.103

    Article  Google Scholar 

  27. Wei P et al (2021) Effect of T6 heat treatment on the surface tribological and corrosion properties of AlSi10Mg samples produced by selective laser melting. Mater Charact: 171. https://doi.org/10.1016/j.matchar.2020.110769

  28. Maamoun AH, Elbestawi M, Dosbaeva GK, Veldhuis SC (2018) Thermal post-processing of AlSi10Mg parts produced by selective laser melting using recycled powder. Addit Manuf 21:234–247. https://doi.org/10.1016/j.addma.2018.03.014

    Article  Google Scholar 

  29. Padovano E, Badini C, Pantarelli A, Gili F, D’Aiuto F (2020) A comparative study of the effects of thermal treatments on AlSi10Mg produced by laser powder bed fusion. J Alloys Compd 831:154822. https://doi.org/10.1016/j.jallcom.2020.154822

    Article  Google Scholar 

  30. Baek MS, Kreethi R, Park TH, Sohn Y, Lee KA (2021) Influence of heat treatment on the high-cycle fatigue properties and fatigue damage mechanism of selective laser melted AlSi10Mg alloy. Mater Sci Eng A 819:141486. https://doi.org/10.1016/j.msea.2021.141486

    Article  Google Scholar 

  31. Di Egidio G, Ceschini L, Morri A, Martini C, Merlin M (2022) A novel T6 rapid heat treatment for AlSi10Mg alloy produced by laser-based powder bed fusion: comparison with t5 and conventional T6 heat treatments. Metall Mater Trans B 53(1):284–303. https://doi.org/10.1007/s11663-021-02365-6

    Article  Google Scholar 

  32. Liu Mengna et al (2022) Microstructure and mechanical property of high-power laser powder bed fusion AlSi10Mg alloy before and after T6 heat treatment. Virtual Phys Prototyping 17(4): 749–767

  33. Lv X, Wen B, Du J (2019) Effects of heat treatment on microstructure and mechanical properties of selective laser melting IN718. XiyouJinshuCailiao Yu Gongcheng/Rare Metal Mater Eng 48(5):1386–1393

    Google Scholar 

  34. Maleki E et al (2021) Fatigue behaviour of notched laser powder bed fusion AlSi10Mg after thermal and mechanical surface post-processing. Mater Sci Eng A 829:142145. https://doi.org/10.1016/j.msea.2021.142145

    Article  Google Scholar 

  35. Lattanzi L, Merlin M, Fortini A, Morri A, Garagnani GL (2022) Effect of thermal exposure simulating vapor deposition on the impact behavior of additively manufactured AlSi10Mg aAlloy. J Mater Eng Perform 31(4):2859–2869. https://doi.org/10.1007/s11665-021-06414-8

    Article  Google Scholar 

  36. Roveda I, Serrano-Munoz I, Kromm A, Madia M (2021) Investigation of residual stresses and microstructure effects on the fatigue behaviour of a L-PBF AlSi10Mg alloy. Procedia Struct Integrit 2022(38):564–571. https://doi.org/10.1016/j.prostr.2022.03.057

    Article  Google Scholar 

  37. Cabibbo M, Montanari R, Pola A, Tocci M, Varone A (2022) Mechanical spectroscopy study of as-cast and additive manufactured AlSi10Mg. J Alloys Compd 914:165361. https://doi.org/10.1016/j.jallcom.2022.165361

    Article  Google Scholar 

  38. Maeshima T, Oh-ishi K (2019) Solute clustering and supersaturated solid solution of AlSi10Mg alloy fabricated by selective laser melting. Heliyon 5(2):e01186. https://doi.org/10.1016/j.heliyon.2019.e01186

    Article  Google Scholar 

  39. Ghasemi A, Fereiduni E, Balbaa M, Elbestawi M, Habibi S (2022) Unraveling the low thermal conductivity of the LPBF fabricated pure Al, AlSi12, and AlSi10Mg alloys through substrate preheating. Addit Manuf 59:103148. https://doi.org/10.1016/j.addma.2022.103148

    Article  Google Scholar 

  40. Jacob KT, Raj S, Rannesh L (2007) Vegard’s law: a fundamental relation or an approximation? ZeitschriftfuerMetallkunde/Mater Res Adv Tech 98(9):776–779. https://doi.org/10.3139/146.101545

  41. Denton AR, Ashcroft NW (1991) Vegards law. Phys Rev A (Coll Park) 43(6):3161–3164. https://doi.org/10.1103/PhysRevA.43.3161

    Article  Google Scholar 

  42. Milligan J, Vintila R, Brochu M (2009) Nanocrystalline eutectic Al-Si alloy produced by cryomilling. Mater Sci Eng, A 508(1–2):43–49. https://doi.org/10.1016/j.msea.2008.12.017

    Article  Google Scholar 

  43. Lubarda VA (2003) On the effective lattice parameter of binary alloys. Mech Mater 35(1–2):53–68

    Article  Google Scholar 

  44. Sun B, Li S, Imai H, Umeda J, Kondoh K (2012) Synthesis kinetics of Mg 2Si and solid-state formation of Mg-Mg 2Si composite. Powder Technol 217:157–162. https://doi.org/10.1016/j.powtec.2011.10.022

    Article  Google Scholar 

  45. Patakham U, Palasay A, Wila P, Tongsri R (2021) MPB characteristics and Si morphologies on mechanical properties and fracture behavior of SLM AlSi10Mg. Mater Sci Eng A 821:141602. https://doi.org/10.1016/j.msea.2021.141602

    Article  Google Scholar 

  46. Dong Z et al (2022) Microstructural evolution and characterization of AlSi10Mg alloy manufactured by selective laser melting. J Market Res 17:2343–2354. https://doi.org/10.1016/j.jmrt.2022.01.129

    Article  Google Scholar 

  47. Ikeno S, Matsui H, Matsuda K, Terayama K, Uetani Y (2001) DSC measurement and HRTEM observation of precipitates in an Al-1.6 mass%Mg2Si alloy. Nippon Kinzoku Gakkaishi/J Jpn Inst Met 65(5):404–408. https://doi.org/10.2320/jinstmet1952.65.5_404

    Article  Google Scholar 

  48. Fiocchi J, Tuissi A, Bassani P, Biffi CA (2017) Low temperature annealing dedicated to AlSi10Mg selective laser melting products. J Alloy Compd 695:3402–3409. https://doi.org/10.1016/j.jallcom.2016.12.019

    Article  Google Scholar 

  49. Albu M, Krisper R, Lammer J, Kothleitner G, Fiocchi J, Bassani P (2020) Microstructure evolution during in-situ heating of AlSi10Mg alloy powders and additive manufactured parts. AdditManuf 36:101605. https://doi.org/10.1016/j.addma.2020.101605

    Article  Google Scholar 

  50. Fiocchi J, Biffi CA, Colombo C, Vergani LM, Tuissi A (2020) Ad Hoc heat treatments for selective laser melted Alsi10mg alloy aimed at stress-relieving and enhancing mechanical performances. JOM 72(3):1118–1127. https://doi.org/10.1007/s11837-019-03973-z

    Article  Google Scholar 

  51. Lasagni F, Mingler B, Dumont M, Degischer HP (2008) Precipitation kinetics of Si in aluminium alloys. Mater Sci Eng, A 480(1–2):383–391. https://doi.org/10.1016/j.msea.2007.07.008

    Article  Google Scholar 

  52. Andersen SJ, Marioara CD, Friis J, Wenner S, Holmestad R (2018) Precipitates in aluminium alloys. Adv Phys: X 3(1):790–814. https://doi.org/10.1080/23746149.2018.1479984. Taylor and Francis Ltd.

  53. Padovano E, Badini C, Pantarelli A, Gili F, D’Aiuto F (2020) A comparative study of the effects of thermal treatments on AlSi10Mg produced by laser powder bed fusion. J Alloys Comp 831:154822. https://doi.org/10.1016/j.jallcom.2020.154822

  54. Zhang C, Zhu H, Liao H, Cheng Y, Hu Z, Zeng X (2018) Effect of heat treatments on fatigue property of selective laser melting AlSi10Mg. Int J Fatigue 116:513–522. https://doi.org/10.1016/j.ijfatigue.2018.07.016

    Article  Google Scholar 

  55. Li W et al (2016) Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: microstructure evolution, mechanical properties and fracture mechanism. Mater Sci Eng A 663:116–125. https://doi.org/10.1016/j.msea.2016.03.088

    Article  Google Scholar 

  56. Zhu Haowen et al (2024) Effects of post heat treatment on the microstructure and mechanical properties of selective laser melted AlSi10Mg alloys. Mater Sci Eng: A 4:146195. https://doi.org/10.1016/j.msea.2024.146195

  57. Damon J, Dietrich S, Vollert F, Gibmeier J, Schulze V (2018) Process dependent porosity and the influence of shot peening on porosity morphology regarding selective laser melted AlSi10Mg parts. Addit Manuf 20:77–89. https://doi.org/10.1016/j.addma.2018.01.001

    Article  Google Scholar 

  58. Bagherifard S, Beretta N, Monti S, Riccio M, Bandini M, Guagliano M (2018) On the fatigue strength enhancement of additive manufactured AlSi10Mg parts by mechanical and thermal post-processing. Mater Des 145:28–41. https://doi.org/10.1016/j.matdes.2018.02.055

    Article  Google Scholar 

  59. Sausto F, Tezzele C, Beretta S (2012) Analysis of fatigue strength of L-PBF AlSi10Mg with different surface post-processes: effect of residual stresses. Metals (Basel) 12(6). https://doi.org/10.3390/met12060898

  60. Schneller W, Leitner M, Pomberger S, Springer S, Beter F, Grün F (2019) Effect of post treatment on the microstructure, surface roughness and residual stress regarding the fatigue strength of selectively laser melted AlSi10Mg structures. J Manuf Mater Process 3(4):89. https://doi.org/10.3390/jmmp3040089

  61. Zhuo L et al (2019) Effect of post-process heat treatment on microstructure and properties of selective laser melted AlSi10Mg alloy. Mater Lett 234:196–200. https://doi.org/10.1016/j.matlet.2018.09.109

    Article  Google Scholar 

  62. Tonelli L, Liverani E, Morri A, Ceschini L (2021) Role of direct aging and solution treatment on hardness, microstructure and residual stress of the A357 (AlSi7Mg0.6) alloy produced by powder bed fusion, metallurgical and materials transactions B: process metallurgy and materials processing. Science 52(4):2484–2496. https://doi.org/10.1007/s11663-021-02179-6

  63. Kempf A, Hilgenberg K (2021) Influence of heat treatments on AlSi10Mg specimens manufactured with different laser powder bed fusion machines. Mater Sci Eng A 818:141371. https://doi.org/10.1016/j.msea.2021.141371

    Article  Google Scholar 

Download references

Acknowledgements

Bonagiri Sai Charan and Mergoju Srikanth are grateful for the fellowship from Council of Scientific & Industrial Research (CSIR)-Senior Research Fellowship (31/GATE/20(33)/2020-EMR-I) and (31/GATE/20(32)/2020-EMR-I), respectively. All the authors are thankful to the Additive manufacturing staff for sample preparation and Central instrumentation facility staff for the characterization. CSIR-CECRI manuscript number: CECRI/PESVC/Pubs/2023-067.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak K. Pattanayak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charan, B.S., Srikanth, M., Swamy, S. et al. Analysis of phase, microstructure, and mechanical characteristics of selective laser melted AlSi10Mg alloy after post-heat treatment. Prog Addit Manuf (2024). https://doi.org/10.1007/s40964-024-00643-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40964-024-00643-8

Keywords

Navigation