Skip to main content

Advertisement

Log in

Microstructural Evolution and Toughness of the Various HAZs in 1300-MPa-Grade Ultrahigh-Strength Structural Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of heat input on the microstructure and toughness of simulated subregions was investigated by welding thermal simulations and Charpy impact tests. The results indicate that the microstructures of the simulated coarse and fine grain heat affected zone (CGHAZ and FGHAZ) gradually changed from lath martensite to a mixture of lath martensite/lath bainite and finally to granular bainite with the increase in heat input. The microstructure of the simulated intercritical heat affected zone (ICHAZ) was mainly composed of granular bainite and blocky martensite regardless of heat input. When the heat input increased, the toughness of the simulated CGHAZ and ICHAZ continuously decreased. Nevertheless, the simulated FGHAZ still displayed good toughness (53.16 J) due to its fine structure. The occurrence of martensite-austenite (M-A) constituents was the main reason for the decrease in crack initiation energy of the simulated CGHAZ and ICHAZ at high values of heat input, and the toughness deteriorated as the size of M-A constituents increased. It should be noted that high-misorientation packet and block boundaries can effectively deviate or arrest the propagation of microcracks. When the heat input was in the approximate range of 8.63-14.95 kJ cm−1, all of the simulated subregions exhibited good toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R.D.K. Misra, H. Nathani, J.E. Hartmann, and F. Siciliano, Microstructural Evolution in a New 770 MPa Hot Rolled Nb-Ti Microalloyed Steel, Mater. Sci. Eng. A, 2005, 394(1), p 339–352

    Article  CAS  Google Scholar 

  2. A. Ghosh, R. Shukla, S. Das, and S. Chatterjee, The Structure And Properties of a Thermo-Mechanically Processed Low Carbon High Strength Steel, Steel Res. Int., 2016, 77(4), p 276–283

    Article  Google Scholar 

  3. G. Magudeeswaran, V. Balasubramanian, and G. Madhusudhan Reddy, Effect of Welding Consumables on Fatigue Performance of Shielded Metal Arc Welded High Strength, Q&T Steel Joints, J. Mater. Eng. Perform., 2009, 18(1), p 49–56

    Article  CAS  Google Scholar 

  4. M. Shome, O.P. Gupta, and O.N. Mohanty, Effect of Simulated Thermal Cycles on the Microstructure of the Heat-affected Zone in HSLA-80 and HSLA-100 Steel Plates, Metall. Mater. Trans. A, 2004, 35(13), p 985–996

    Article  Google Scholar 

  5. J.H. Chen, Y. Kikuta, T. Araki, M. Yoneda, and Y. Matsuda, Micro-fracture Behaviour Induced by M-A Constituent (Island Martensite) in Simulated Welding Heat Affected Zone of HT80 High Strength Low Alloyed Steel, Acta Metall., 1984, 32(10), p 1779–1788

    Article  CAS  Google Scholar 

  6. W. Meng, Z. Li, X. Jiang, J. Huang, Y. Wu, and S. Katayama, Microstructure and Toughness of Simulated Heat-Affected Zone of Laser Welded Joint for 960 MPa Grade High Strength Steel, J. Mater. Eng. Perform., 2014, 23(10), p 3640–3648

    Article  CAS  Google Scholar 

  7. B. Hutchinson, J. Komenda, G.S. Rohrer, and H. Beladi, Heat Affected Zone Microstructures and Their Influence on Toughness in Two Microalloyed HSLA Steels, Acta Mater., 2015, 97, p 380–391

    Article  CAS  Google Scholar 

  8. R. Cao, J. Li, D.S. Liu, J.Y. Ma, and J.H. Chen, Micromechanism of Decrease of Impact Toughness in Coarse-Grain Heat-Affected Zone of HSLA Steel with Increasing Welding Heat Input, Metall. Mater. Trans. A, 2015, 46(7), p 2999–3014

    Article  CAS  Google Scholar 

  9. F.Y. Song, M.H. Shi, P. Wang, F.X. Zhu, and R.D.K. Misra, Effect of Mn Content on Microstructure and Mechanical Properties of Weld Metal During High Heat Input Welding Processes, J. Mater. Eng. Perform., 2017, 26(6), p 2947–2953

    Article  CAS  Google Scholar 

  10. P. Mohseni, J.K. Solberg, M. Karlsen, O.M. Akselsen, and E. Østby, Investigation of Mechanism of Cleavage Fracture Initiation in Intercritically Coarse Grained Heat Affected Zone of HSLA Steel, Mater. Sci. Technol., 2012, 28(11), p 1261–1268

    Article  CAS  Google Scholar 

  11. J.A. Gianetto, J.E.M. Braid, J.T. Bowker, and W.R. Tyson, Heat-Affected Zone Toughness of a TMCP Steel Designed for Low-Temperature Applications, J. Offshore Mech. Arct., 1997, 119(2), p 134–144

    Article  Google Scholar 

  12. J. Yang, K. Zhu, R. Wang, and J. Shen, Improving the Toughness of Heat Affected Zone of Steel Plate by Use of Fine Inclusion Particles, Steel Res. Int., 2011, 82(5), p 552–556

    Article  CAS  Google Scholar 

  13. Z.R. Shi, C.F. Yang, R.Z. Wang, H. Su, F. Chai, J.F. Chu, and Q.F. Wang, Effect of Nitrogen on the Microstructures and Mechanical Properties in Simulated CGHAZ of Vanadium Microalloyed Steel Varied with Different Heat Inputs, Mater. Sci. Eng. A, 2016, 649, p 270–281

    Article  CAS  Google Scholar 

  14. Z.X. Zhu, J. Han, H.J. Li, and C. Lu, High Temperature Processed High Nb X80 Steel with Excellent Heat-Affected Zone Toughness, Mater. Lett., 2016, 163, p 171–174

    Article  CAS  Google Scholar 

  15. H.H. Wang, K.M. Wu, X.W. Lei, and Y. Qian, Effect of Fast Cooling Process on Microstructure and Toughness of Heat Affected Zone in High Strength Pipeline Steel X120, Sci. Technol. Weld. Join., 2013, 17(4), p 309–313

    Article  CAS  Google Scholar 

  16. Y. Terada, H. Tamehiro, H. Morimoto, T. Hara, E. Tsuru, H. Asahi, M. Sugiyama, N. Doi, M. Murata, and N. Ayukawa, X100 Linepipe with Excellent HAZ Toughness and Deformability, in 22nd International Conference on Offshore Mechanics & Arctic Engineering ASME, 2003, p 287–294

  17. S. Moeinifar, A.H. Kokabi, and H.R.M. Hosseini, Role of Tandem Submerged Arc Welding Thermal Cycles on Properties of the Heat Affected Zone in X80 Microalloyed Pipe Line Steel, J. Mater. Process. Technol., 2011, 211(3), p 368–375

    Article  CAS  Google Scholar 

  18. W. Wang, W. Zhao, and J. Qu, Effect of Heat Treatment on Microstructure and Mechanical Properties of 2.25Cr–1Mo Steel, Steel Res. Int., 2013, 84(2), p 178–183

    Article  CAS  Google Scholar 

  19. J. Lee and Y. Pan, The Formation of Intragranular Acicular Ferrite in Simulated Heat-Affected Zone, ISIJ Int., 1995, 35(8), p 1027–1033

    Article  CAS  Google Scholar 

  20. N.N. Rykalin, Calculations of Heat Processes in Welding, Office for Official Publications of the European Communities, Moscow, 1960, p 183–201

    Google Scholar 

  21. L. Lan, C. Qiu, D. Zhao, X. Gao, and L. Du, Microstructural Characteristics and Toughness of the Simulated Coarse Grained Heat Affected Zone of High Strength Low Carbon Bainitic Steel, Mater. Sci. Eng. A, 2011, 529, p 192–200

    Article  CAS  Google Scholar 

  22. E. Bouyne, H.M. Flower, T.C. Lindley, and A. Pineau, Use of EBSD Technique to Examine Microstructure and Cracking in a Bainite Steel, Scr. Mater., 1998, 39(3), p 295–300

    Article  CAS  Google Scholar 

  23. X. Yue, Investigation on Heat-affected Zone Hydrogen-Induced Cracking of High-strength Naval Steels Using the Granjon Implant Test, Weld. World, 2015, 59(1), p 77–89

    Article  CAS  Google Scholar 

  24. V. Biss and R.L. Cryderman, Martensite and Retained Austenite in Hot-Rolled, Low-Carbon Bainitic Steels, Metall. Mater. Trans. B, 1971, 2(8), p 2267–2276

    Article  CAS  Google Scholar 

  25. Y. Li and T.N. Baker, Effect of Morphology of Martensite-Austenite Phase on Fracture of Weld Heat Affected Zone in Vanadium and Niobium Microalloyed Steels, Mater. Sci. Technol., 2010, 26(9), p 1029–1040

    Article  CAS  Google Scholar 

  26. Y. Sakuma, O. Matsumura, and H. Takechi, Mechanical Properties and Retained Austenite in Intercritically Heat-Treated Bainite-Transformed Steel and Their Variation with Si and Mn Additions, Metall. Mater. Trans. A, 1991, 22(2), p 489–498

    Article  Google Scholar 

  27. S. Lee, B.C. Kim, and D.Y. Lee, Fracture Mechanism in Coarse Grained HAZ of HSLA Steel Welds, Scr. Metall., 1989, 23(6), p 995–1000

    Article  CAS  Google Scholar 

  28. J.Y. Koo and G. Thomas, Metallurgical Factors Controlling Impact Properties of Two Phase Steels, Scr. Metall., 1979, 13(12), p 1141–1145

    Article  CAS  Google Scholar 

  29. M. Shi, X. Yuan, H. Huang, and S. Zhang, Effect of Zr Addition on the Microstructure and Toughness of Coarse-Grained Heat-Affected Zone with High-Heat Input Welding Thermal Cycle in Low-Carbon Steel, J. Mater. Eng. Perform., 2017, 26(7), p 3160–3168

    Article  CAS  Google Scholar 

  30. D.A. Curry and J.F. Knott, Effect of Microstructure on Cleavage Fracture Toughness of Quenched and Tempered Steels, Met. Sci. J., 1979, 13(6), p 341–345

    Article  CAS  Google Scholar 

  31. M.J. Santofimia, C. Kwakernaak, W.G. Sloof, L. Zhao, and J. Sietsma, Experimental Study of the Distribution of Alloying Elements after the Formation of Epitaxial Ferrite upon Cooling in a Low-Carbon Steel, Mater. Charact., 2010, 61(10), p 937–942

    Article  CAS  Google Scholar 

  32. A. Lambert-Perlade, A.F. Gourgues, and A. Pineau, Austenite to Bainite Phase Transformation in the Heat-Affected Zone of a High Strength Low Alloy Steel, Acta Mater., 2004, 52(8), p 2337–2348

    Article  CAS  Google Scholar 

  33. A. Lambert-Perlade, X. Garat, T. Sturel, A.F. Gourgues, and A. Gingell, Application of Acoustic Emission to the Study of Cleavage Fracture Mechanism in a HSLA Steel, Scr. Mater., 2000, 43(2), p 161–166

    Article  Google Scholar 

  34. A.F. Gourgues, Electron Backscatter Diffraction and Cracking, Mater. Sci. Technol., 2002, 18(2), p 119–133

    Article  CAS  Google Scholar 

  35. M. Díaz-Fuentes, A. Iza-Mendia, and I. Gutiérrez, Analysis of Different Acicular Ferrite Microstructures in Low-Carbon Steels by Electron Backscattered Diffraction. Study of their toughness behavior, Metall. Mater.Trans. A, 2003, 34(11), p 2505–2516

    Article  Google Scholar 

  36. H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino, Crystallographic Features of Lath Martensite in Low-Carbon steel, Acta Mater., 2006, 54(5), p 1279–1288

    Article  CAS  Google Scholar 

  37. C. Wang, M. Wang, J. Shi, W. Hui, and H. Dong, Effect of Microstructural Refinement on the Toughness of Low Carbon Martensitic steel, Scr. Mater., 2008, 58(6), p 492–495

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key Research and Development Program of China (2016 YFB 0300601), National Nature Science Foundation of China (Grant Nos. 51504064, 51474064, 51234002), China Postdoctoral Science Foundation (2016M591443) and the Fundamental Research Funds for Central Universities (N160704002, N160708001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changfei Wen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, C., Deng, X., Tian, Y. et al. Microstructural Evolution and Toughness of the Various HAZs in 1300-MPa-Grade Ultrahigh-Strength Structural Steel. J. of Materi Eng and Perform 28, 1301–1311 (2019). https://doi.org/10.1007/s11665-019-3869-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-3869-1

Keywords

Navigation