Skip to main content
Log in

Microstructural Characteristics and Impact Fracture Behaviors of a Novel High-Strength Low-Carbon Bainitic Steel with Different Reheated Coarse-Grained Heat-Affected Zones

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

To obtain the correlation of microstructural characteristics and toughness in a novel high-strength low-carbon bainitic structural steel with medium and heavy plate after multipass welding, a welding thermal simulation experiment was conducted to simulate different subregions in the reheated coarse-grained heat-affected zones (CGHAZ). The microstructure evolution was then analyzed and factors that influence the fracture behavior were studied. The results show that the brittle zone appeared in subcritical reheated CGHAZ, and the fractured morphology was cleavage fracture. Supercritical reheated CGHAZ had the highest impact toughness, and the fractured morphology was primarily the ductile fracture with dimples formed via the micropore polycondensation mechanism. With an increase in the secondary pass welding thermal cycle peak temperature (tp2), the average length size of martensite and austenite (M-A) decreased from 9 to 2 μm. The coarsening of M-A constituents was the main reason for decrease in the crack initiation absorbed energy. A large number of retained austenite and cementite precipitates in subcritical reheated CGHAZ clearly worsened the impact toughness, and the massive austenite and cementite precipitates more than offset the beneficial effects of high-angle boundaries. This phenomenon led to disappearance of the effect of high-angle grain boundary of prior austenite and lath bainite on arresting crack propagation. In supercritical reheated CGHAZ, crack propagation absorbed energy was increased because of grain refinement, fine precipitates, lamellar residual austenite at corners, and high-angle grain boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. V. Aleksić, L. Milović, I. Blačić, T. Vuherer, and S. Bulatović: Eng. Failure Anal., 2019, vol. 104, pp. 1094-106.

    Article  Google Scholar 

  2. J.J. Cui, W.T. Zhu, Z.Y. Chen, and L.Q. Chen: Sci. Technol. Weld. Joining, 2020, vol. 25, pp. 169-77.

    Article  CAS  Google Scholar 

  3. X.H. Yu, J.L. Caron, S.S. Babu, J.C. Lippold, D. Isheim, and D.N. Seidman: Metall. Mater. Trans. A, 2011, vol. 42, pp. 3669-79.

    Article  Google Scholar 

  4. P. Mohseni, J.K. Solberg, M. Karlsen, O.M. Akselsen, and E. Østby: Mater. Sci. Technol., 2012, vol. 28, pp. 1261-68.

    Article  CAS  Google Scholar 

  5. S. Moeinifar, A.H. Kokabi, and H.R.M. Hosseini: Mater. Des., 2010, vol. 31, pp. 2948-55.

    Article  CAS  Google Scholar 

  6. J. Hu, L.X. Du, J.J. Wang, H. Xie, C.R. Gao, and R.D.K. Misra: Mater. Sci. Eng. A, 2014, vol. 590, pp. 323-28.

    Article  CAS  Google Scholar 

  7. Y.L. Zhou, T. Jia, X.J. Zhang, and R.D.K. Misra: J. Mater. Process. Technol., 2015, vol. 219, pp. 314-20.

    Article  CAS  Google Scholar 

  8. L.Y. Lan, C.L. Qiu, H.Y. Song, and D.W. Zhao: Mater. Lett., 2014, vol. 125, pp. 86-88.

    Article  CAS  Google Scholar 

  9. Q.M. Jiang, X.Q. Zhang, S. Hu, L.Q. Chen, and W.H. Sun: Welding Technology (In Chinese), 2015, vol. 44, pp. 5-9.

    CAS  Google Scholar 

  10. Y. You, C.J. Shang, L. Chen, and S. Subramanian: Mater. Des., 2013, vol. 43, pp. 485-91.

    Article  CAS  Google Scholar 

  11. L.Y. Lan, C.L. Qiu, D.W. Zhao, C.M. Li, X.H. Gao, and L.X. Du: Acta Metall. Sin. (in Chinese), 2011, vol. 47, pp. 1046-54.

    CAS  Google Scholar 

  12. A.M. Guo, R.D.K. Misra, J.B. Liu, L. Chen, X.L. He, and S.J. Jansto: Mater. Sci. Eng. A, 2010, vol. 527, pp. 6440-48.

    Article  Google Scholar 

  13. P.A. Lambert, A.F. Gourgues, J. Besson, T. Sturel, and A. Pinear: Metall. Mater. Trans. A, 2004, vol. 35, pp. 1039-53.

    Article  Google Scholar 

  14. N.N. Rykalin: Calculation of Heat Processes in Welding, Translation at the European Commission: Office for Official Publications of the European Communities, Moscow, 1960, pp. 28–35.

  15. A.F. Gourgues: Mater. Sci. Technol., 2002, vol. 18, pp. 119-33.

    Article  CAS  Google Scholar 

  16. M. Yang, Y.J. Chao, X.D. Li, D. Immel, and J.Z. Tan: Mater. Sci. Eng. A, 2008, vol. 497, pp. 462-70.

    Article  Google Scholar 

  17. A.F. Gourgues, H.M. Flower, and T.C. Lindley: Mater. Sci. Technol., 2000, vol. 16, pp. 26-40.

    Article  CAS  Google Scholar 

  18. X.L. Yang, Y.B. Xu, X.D. Tan, and D. Wu: Mater. Sci. Eng. A, 2015, vol. 641, pp. 96-106.

    Article  CAS  Google Scholar 

  19. T. Kobayashi: Eng. Fract. Mech., 1984, vol. 19, pp. 49-65.

    Article  Google Scholar 

  20. P.R. Sreenivasan, A. Moitra, S.K. Ray, S.L. Mannan, and R. Chandramohan: Int. J. Pressure Vessels Piping, 1996, vol. 69, pp. 149-59.

    Article  CAS  Google Scholar 

  21. A.A. Griffith: Philos. Trans. R. Soc. London, 1921, vol. 221, pp. 163-98.

    Article  Google Scholar 

  22. D.A. Curry, J.F. Knott: Met. Sci., 1978, vol. 12, pp. 511-14.

    Article  CAS  Google Scholar 

  23. W.W. B. Filho, A.L. Carvalho, and P. Bowen: Mater. Sci. Eng. A, 2007, vol. 452-453, pp. 401-10.

    Article  Google Scholar 

  24. K. Zhang, Q.L. Yong, X.J. Sun, Z.D. Li, P.L. Zhao, and S.D. Chen: Acta Metall. Sin. (in Chinese), 2014, vol. 50, pp. 913-20.

    CAS  Google Scholar 

  25. A. Lambert, J. Drillet, A.F. Gourgues, T. Sturel, and A. Pineau: Sci. Technol. Weld. Joining, 2000, vol. 5, pp. 168-73.

    Article  CAS  Google Scholar 

  26. J.D. Chen, W.L. Mo, P. Wang, and S.P. Lu: Acta Metall. Sin. (in Chinese), 2012, vol. 48, pp. 1186-93.

    Article  CAS  Google Scholar 

  27. Y. Shao, B.Y. Yan, Y.H. Liu, C.L. Mao, C. Wei, Y.C. Liu, Z.S. Yan, H.J. Li, and C.X. Liu: J. Manuf. Process., 2019, vol. 43, pp. 9-16.

    Article  Google Scholar 

  28. W. Zhang, L.Z. Jiang, J.C. Hu, and H.M. Song: Mater. Charact., 2009, vol. 60, pp. 50-55.

    Article  CAS  Google Scholar 

  29. K. Kocatepe, M. Cerah, and M. Erdogan: Mater. Des., 2007, vol. 28, pp. 172-81.

    Article  CAS  Google Scholar 

  30. Y.S. Ahn, H.D. Kim, T.S. Byun, Y.J. Oh, G.M. Kim, and J.H. Hong: Nucl. Eng. Des., 1999, vol. 194, pp. 161-77.

    Article  CAS  Google Scholar 

  31. C.K. Syn, B. Fultz, and J.W. Morris: Metall. Trans. A, 1978, vol. 9, pp. 1635-40.

    Article  CAS  Google Scholar 

  32. G. Thomas: Metall. Trans. A, 1978, vol. 9, pp. 439-50.

    Article  CAS  Google Scholar 

  33. M. Diaz-Fuentes, A. Iza-Mendia, and I. Gutierrez: Metall. Mater. Trans. A, 2003, vol. 34, pp. 2505-16.

    Article  CAS  Google Scholar 

  34. J. Kang, C. Wang, and G.D. Wang: Mater. Sci. Eng. A, 2012, vol. 553, pp. 96-104.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51904071), the Fundamental Research Funds for the Central Universities (Grant No. N180703011), the Postdoctoral Science Foundation of Northeastern University (Grant No. 20190302), the PhD Start-up Fund of Natural Science Foundation of Liaoning Province (Grant No. 2020-BS-271), the Key Research and Development Program of Hebei Province of China (Grant No. 18211019D), and Technical Development Program between HBIS Company Limited and NEU (Contract No. 2019040200044).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junjun Cui or Liqing Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 19, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Zhu, W., Chen, Z. et al. Microstructural Characteristics and Impact Fracture Behaviors of a Novel High-Strength Low-Carbon Bainitic Steel with Different Reheated Coarse-Grained Heat-Affected Zones. Metall Mater Trans A 51, 6258–6268 (2020). https://doi.org/10.1007/s11661-020-06017-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-06017-3

Navigation