Skip to main content
Log in

Effect of Welding Thermal Cycle on Microstructural Characteristics and Toughness in Simulated Heat Affected Zone of Low-C Medium-Mn High Strength Steel

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

We describe here microstructural characteristics and low temperature impact toughness relationship of simulated heat affected zone (HAZ) in low-C medium-Mn high strength steel based on thermal simulation. The results indicated that the low-temperature impact energy of coarse grained HAZ (CGHAZ) was decreased from 39 to 29 J with the increasing simulated welding heat input from 10 to 30 kJ/cm. The deterioration of toughness in CGHAZ was mainly attributed to coarse martensite lath. The low-temperature impact energy of CGHAZ, fine grained HAZ (FGHAZ), intercritical HAZ (ICHAZ) and subcritical HAZ (SCHAZ) at − 40 °C was 38, 92, 57 and 146 J, respectively, and the microhardness was 381, 399, 321 and 282 HV, respectively, at simulated welding heat input of 15 kJ/cm. High proportion of high misorientation boundaries and fine martensite lath microstructure in FGHAZ induced relatively good low temperature impact toughness and highest microhardness. The microstructure of ICHAZ comprises tempered martensite, retained austenite and non-uniform martensite, which reduced the impact toughness to some extent. The microstructure and properties of SCHAZ did not change significantly compared to the base metal because of lower peak temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

References

  1. J. Han, J.H. Nam, and Y.K. Lee, The Mechanism of Hydrogen Embrittlement in Intercritically Annealed Medium Mn TRIP Steel, Acta Mater., 2016, 113, p 1–10.

    Article  CAS  Google Scholar 

  2. H. Liu, L.X. Du, J. Hu, H.Y. Wu, X.H. Gao, and R.D.K. Misra, Interplay Between Reversed Austenite and Plastic Deformation in a Directly Quenched and Intercritically Annealed 0.04C–5Mn Low-Al Steel, J. Alloys Compd., 2017, 695, p 2072–2082.

    Article  CAS  Google Scholar 

  3. S.J. Lee and B.C. De Cooman, Mn Partitioning During the Intercritical Annealing of Ultrafine-Grained 6% Mn Transformation-Induced Plasticity Steel, Scr. Mater., 2011, 64, p 649–652.

    Article  CAS  Google Scholar 

  4. J. Hu, L.X. Du, W. Xu, J.H. Zhai, Y. Dong, Y.J. Liu, and R.D.K. Misra, Ensuring Combination of Strength, Ductility and Toughness in Medium Manganese Steel Through Optimization of Nano-Scale Metastable Austenite, Mater. Charact., 2021, 136, p 20–28.

    Article  Google Scholar 

  5. Z.B. Dai, H. Chen, R. Ding, Q. Lu, C. Zhang, Z.G. Yang, and S. van der Zwaag, Fundamentals and Application of Solid-State Phase Transformations for Advanced High Strength Steels Containing Metastable Retained Austenite, Mater. Sci. Eng. Rep., 2021, 143, p 100590.

    Article  Google Scholar 

  6. J. Hu, L.X. Du, H. Liu, G.S. Sun, H. Xie, H.L. Yi, and R.D.K. Misra, Structure-Mechanical Property Relationship in a Low-C Medium-Mn Ultrahigh Strength Heavy Plate Steel with Austenite-Martensite Submicro-Laminate Structure, Mater. Sci. Eng. A, 2015, 647(28), p 144–151.

    Article  CAS  Google Scholar 

  7. J. Hu, L.X. Du, G.S. Sun, H. Xie, and R.D.K. Misra, The Determining Role of Reversed Austenite in Enhancing Toughness of a Novel Ultra-Low Carbon Medium Manganese High Strength Steel, Scr. Mater., 2015, 104(15), p 87–90.

    Article  CAS  Google Scholar 

  8. Y. Du, X.H. Gao, Z.W. Du, L.Y. Lan, R.D.K. Misra, H.Y. Wu, and L.X. Du, Hydrogen Diffusivity in Different Microstructural Components in Martensite Matrix with Retained Austenite, Int. J. Hydrogen Energ., 2021, 46, p 8269–8284.

    Article  CAS  Google Scholar 

  9. E.D. Moor, D.K. Matlock, J.G. Speer, and M.J. Merwin, Austenite Stabilization Through Manganese Enrichment, Scr. Mater., 2011, 64(2), p 185–188.

    Article  Google Scholar 

  10. S. Lee, S.J. Lee, and B.C. De Cooman, Austenite Stability of Ultrafine-Grained Transformation-Induced Plasticity Steel with Mn Partitioning, Scr. Mater., 2011, 65(3), p 225–228.

    Article  CAS  Google Scholar 

  11. H.W. Luo, J. Shi, C. Wang, W.Q. Cao, X.J. Sun, and H. Dong, Experimental and Numerical Analysis on Formation of Stable Austenite During the Intercritical Annealing of 5Mn Steel, Acta Mater., 2011, 59(10), p 4002–4014.

    Article  CAS  Google Scholar 

  12. N. Nakada, K. Mizutani, T. Tsuchiyama, and S. Takaki, Difference in Transformation Behavior Between Ferrite and Austenite Formations in Medium Manganese Steel, Acta Mater., 2014, 65(15), p 251–258.

    Article  CAS  Google Scholar 

  13. Y. Dong, B. Zhang, Y. Du, L.X. Du,, and R.D.K. Misra, The Significant Impact of Ti Addition on the Hot Deformation Behavior of Medium Manganese Microalloyed Steel. Steel Res. Int. 2021, 202100074**

  14. B. Zhao, Y.F. Wang, K. Ding, G.Z. Wu, T. Wei, H. Pan, and Y.L. Gao, Role of Intercritical Annealing in Enhancing the Cross-Tension Property of Resistance Spot-Welded Medium Mn Steel, J. Mater. Eng. Perform., 2021, 30, p 1259–1269.

    Article  CAS  Google Scholar 

  15. L.Y. Lan, C.L. Qiu, D.W. Zhao, X.H. Gao, and L.X. Du, Microstructural Characteristics and Toughness of the Simulated Coarse Grained Heat Affected Zone of High Strength Low Carbon Bainitic Steel, Mater. Sci. Eng. A, 2011, 529, p 192–200.

    Article  CAS  Google Scholar 

  16. H. Xie, L.X. Du, J. Hu, G.S. Sun, H.Y. Wu, and R.D.K. Misra, Effect of Thermo-Mechanical Cycling on the Microstructure and Toughness in the Weld CGHAZ of a Novel High Strength Low Carbon Steel, Mater. Sci. Eng. A, 2015, 639, p 482–488.

    Article  CAS  Google Scholar 

  17. G. Janardhan, G. Mukhopadhyay, K. Kishore, and K. Dutta, Resistance Spot Welding of Dissimilar Interstitial-Free and High-Strength Low-Alloy Steels, J. Mater. Eng. Perform., 2020, 29, p 3383–3394.

    Article  CAS  Google Scholar 

  18. Md.M. Husain, R. Sarkar, T.K. Pal, N. Prabhu, and M. Ghosh, Friction Stir Welding of Steel: heat Input, Microstructure, and Mechanical Property Co-Relation, J. Mater. Eng. Perform., 2015, 24, p 3673–3683.

    Article  CAS  Google Scholar 

  19. X.L. Wang, Z.Q. Wang, X.P. Ma, S.V. Subramanian, Z.J. Xie, C.J. Shang, and X.C. Li, Analysis of Impact Toughness Scatter in Simulated Coarse-Grained HAZ of E550 Grade Offshore Engineering Steel from the Aspect of Crystallographic Structure, Mater. Charact., 2018, 140, p p312-319.

    Article  Google Scholar 

  20. X. Luo, X.H. Chen, T. Wang, S.W. Pan, and Z.D. Wang, Effect of Morphologies of Martensite-Austenite Constituents on Impact Toughness in Intercritically Reheated Coarse-Grained Heat-Affected Zone of HSLA Steel, Mater. Sci. Eng. A, 2018, 710(5), p 192–199.

    Article  CAS  Google Scholar 

  21. B. Hutchinson, J. Komenda, G.S. Rohrer, and H. Beladi, Heat Affected Zone Microstructures and Their Influence on Toughness in Two Microalloyed HSLA Steels, Acta Mater., 2015, 97(15), p 380–391.

    Article  CAS  Google Scholar 

  22. A.E. Amer, M.Y. Koo, K.H. Lee, S.H. Kim, and S.H. Hong, Effect of Welding Heat Input on Microstructure and Mechanical Properties of Simulated HAZ in Cu Containing Microalloyed Steel, J. Mater. Sci., 2010, 45(5), p 1248–1254.

    Article  CAS  Google Scholar 

  23. J. Hu, L.X. Du, H. Xie, F.T. Dong, and R.D.K. Misra, Effect of Weld Peak Temperature on the Microstructure, Hardness, and Transformation Kinetics of Simulated Heat Affected Zone of Hot Rolled Ultra-Low Carbon High Strength Ti-Mo Ferritic Steel, Mater. Des., 2014, 60, p 302–309.

    Article  CAS  Google Scholar 

  24. J. Hu, L.X. Du, J.J. Wang, H. Xie, C.R. Gao, and R.D.K. Misra, High Toughness in the Intercritically Reheated Coarse-Grained (ICRCG) Heat-Affected Zone (HAZ) of Low Carbon Microalloyed Steel, Mater. Sci. Eng. A, 2014, 590, p 323–328.

    Article  CAS  Google Scholar 

  25. J. Hu, L.X. Du, J.J. Wang, and C.R. Gao, Effect of Welding Heat Input on Microstructures and Toughness in Simulated CGHAZ of V-N High Strength Steel, Mater. Sci. Eng. A, 2013, 577, p 161–168.

    Article  CAS  Google Scholar 

  26. L.Y. Lan, C.L. Qiu, D.W. Zhao, X.H. Gao, and L.X. Du, Analysis of Martensite-Austenite Constituent and Its Effect on Toughness in Submerged Arc Welded Joint of Low Carbon Bainitic Steel, J. Mater. Sci., 2012, 47, p 4732–4742.

    Article  CAS  Google Scholar 

  27. J. Yoo, K. Han, Y. Park, and C. Lee, Correlation Between Microstructure and Mechanical Properties of Heat Affected Zones in Fe-8Mn-006C Steel Welds, Mater. Chem. Phys., 2014, 146(12), p 175–182.

    Article  CAS  Google Scholar 

  28. M.E. ErvunaEfzan and S. Kesahvanveraragu, Review on Pipelines in Offshore Platform Processing System, Appl. Mech. Mater., 2015, 695, p 684–687.

    Article  Google Scholar 

  29. D.Z. Zhang, X.H. Gao, G.Q. Su, L.X. Du, Z.G. Liu, and J. Hu, Corrosion Behavior of Low-C Medium-Mn Steel in Simulated Marine Immersion and Splash Zone Environment, J. Mater. Eng. Perform., 2017, 26, p 2599–2607.

    Article  CAS  Google Scholar 

  30. J. Hu, J.M. Zhang, G.S. Sun, L.X. Du, Y. Liu, Y. Dong, and R.D.K. Misra, High Strength and Ductility Combination in Nano-/Ultrafine-Grained Medium-Mn Steel by Tuning the Stability of Reverted Austenite Involving Intercritical Annealing, J. Mater. Sci., 2019, 54, p 6565–6578.

    Article  CAS  Google Scholar 

  31. Y. Dong, B. Zhang, Y. Du, L.X. Du, and R.D.K. Misra, The significant impact of Ti addition on the hot deformation behavior of medium-Manganese microalloye**d steel, Steel Res. Int. 2021, 2100074.

  32. ISO 6507-1, Metallic materials-Vickers hardness test-Part 1: Test method, 2005.

  33. M. De Meyer, L. Kestens, and B.C. De Cooman, Texture Development in Cold Rolled and Annealed C-Mn-Si and C-Mn-Al-Si TRIP Steels, Mater. Sci. Technol., 2001, 17, p 1353–1359.

    Article  Google Scholar 

  34. B.C. De Cooman, Structure-Properties Relationship in TRIP Steels Containing Carbide-Free Bainite, Curr. Opin. Solid State Mater. Sci., 2004, 8, p 285–303.

    Article  Google Scholar 

  35. J.W. Morris Jr., Stronger, Tougher Steels, Science, 2008, 320, p 1022–1023.

    Article  CAS  Google Scholar 

  36. A.F. Gourgues, Electron Backscatter Diffraction and Cracking, Mater. Sci. Technol., 2002, 18(2), p 119–133.

    Article  CAS  Google Scholar 

  37. X.Y. Qi, L.X. Du, J. Hu, and R.D.K. Misra, High-Cycle Fatigue Behavior of Low-C Medium-Mn High Strength Steel with Austenite-Martensite Submicron-Sized Lath-Like Structure, Mater. Sci. Eng. A, 2018, 718, p 477–482.

    Article  CAS  Google Scholar 

  38. Y. Qiao and A.S. Argon, Cleavage Crack Resistance of High Angle Grain Boundaries in Fe-3%Si Alloy, Mech. Mate., 2003, 35(3–6), p 313–331.

    Article  Google Scholar 

  39. X.Y. Qi, L.X. Du, Y. Dong, R.D.K. Misra, Y. Du, H.Y. Wu, and X.H. Gao, Fracture Toughness Behavior of Low-C Medium-Mn High-Strength Steel with Submicron-Scale Laminated Microstructure of Tempered Martensite and Reversed Austenite, J. Mater. Sci., 2019, 54(18), p 12095–12105.

    Article  CAS  Google Scholar 

  40. L.Y. Lan, X.W. Kong, and C.L. Qiu, Characterization of Coarse Bainite Transformation in Low Carbon Steel During Simulated Welding Thermal Cycles, Mater. Charact., 2015, 105, p 95–103.

    Article  CAS  Google Scholar 

  41. S. Morito, H. Saito, T. Ogawa, T. Furuhara, and T. Maki, Effect of Austenite Grain Size on the Morphology and Crystallography of lath Martensite in Low Carbon Steels, ISIJ Int., 2005, 45, p 91–94.

    Article  CAS  Google Scholar 

  42. S. Morito, H. Yoshida, T. Maki, and X. Huang, Effect of Block Size on the Strength of Lath Martensite in Low Carbon Steels, Mater. Sci. Eng. A, 2006, 438–440, p 237–240.

    Article  Google Scholar 

  43. J. Yoo, K. Han, Y. Park, and C. Lee, Correlation Between Microstructure and Mechanical Properties of Heat Affected Zones in Fe-8.Mn-006C Steel Welds, Mater. Chem. Phys., 2014, 146(1–2), p 175–182.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully appreciate the financial support by the National High-tech R&D Program (863 Program), China [Grant No. 2015AA03A501]. The authors gratefully acknowledge continued collaboration with Professor R.D.K. Misra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin-xiu Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Qi, X.Y., Du, Lx. et al. Effect of Welding Thermal Cycle on Microstructural Characteristics and Toughness in Simulated Heat Affected Zone of Low-C Medium-Mn High Strength Steel. J. of Materi Eng and Perform 31, 2653–2663 (2022). https://doi.org/10.1007/s11665-021-06453-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06453-1

Keywords

Navigation