Skip to main content

Advertisement

Log in

Tailoring Sodium Iron Hexacyanoferrate/Carbon Nanotube Arrays with 3D Networks for Efficient Sodium Ion Storage

  • Topical Collection: Advanced Metal Ion Batteries
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Sodium iron hexacyanoferrate (FeHCF), as Prussian blue, is a promising cathode for sodium ion batteries (SIBs) on account of its open framework structure. Here, FeHCF nanocubes anchored on carbon nanotube (CNT) arrays (FeHCF/CNTs-CC) as integrated electrodes for SIBs have been synthesized via the combination of chemical vapor deposition, immersion–oxidation, and single-iron-source methods. CNT arrays loaded on carbon cloth link FeHCF nanocubes and provide abundant pathways for electrons, as well as a large surface area for sodium ion exchange at the surface of the electrode and electrolyte to facilitate electrochemical kinetics. With the assistance of CNT arrays, FeHCF/CNTs-CC display outstanding high-rate capabilities (135 mA h g−1/0.1 A g−1 and 90 mA h g−1/2 A g−1), and good cycling stability with a capacity retention of 85% after 1000 cycles at 0.5 A g−1.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S.Y. Dong, N. Lv, Y.L. Wu, Y.Z. Zhang, G.Y. Zhu, and X.C. Dong, Titanates for sodium-ion storage. Nano Today 42, 101349 (2022).

    Article  CAS  Google Scholar 

  2. J. Peng, W. Zhang, Q. Liu, J. Wang, S. Chou, H. Liu, and S. Dou, Prussian blue analogues for sodium-ion batteries: past, present, and future. Adv. Mater. 34, 2108384 (2022).

    Article  CAS  Google Scholar 

  3. C.A. Zhou, Z.J. Yao, X.H. Xia, X.L. Wang, C.D. Gu, and J.P. Tu, Low-strain titanium-based oxide electrodes for electrochemical energy storage devices: design, modification, and application. Mater. Today Nano 11, 100085 (2020).

    Article  Google Scholar 

  4. Z. Zhao, X. Teng, Q. Xiong, H. Chi, Y. Yuan, H. Qin, and Z. Ji, Nano-sized FeSe2 decorated rGO as a potential anode material with enhanced lithium-ion storage. Sustain. Mater. Technol. 29, e00313 (2021).

    CAS  Google Scholar 

  5. C. Li, J. Hou, J. Zhang, X. Li, S. Jiang, G. Zhang, Z. Yao, T. Liu, S. Shen, Z. Liu, X. Xia, J. Xiong, and Y. Yang, Heterostructured NiS2@SnS2 hollow spheres as superior high-rate and durable anodes for sodium-ion batteries. Sci. China Chem. 65, 1420 (2022).

    Article  CAS  Google Scholar 

  6. Yu. Zhihong Tian, J.Z. Zhang, Q. Li, T. Liu, and M. Antonietti, A reanalysis of the diverse sodium species in carbon anodes for sodium ion batteries: a thermodynamic view. Adv. Energy Mater. 11, 2102489 (2021).

    Article  Google Scholar 

  7. L. Kong, M. Liu, H. Huang, Xu. Yunhua, and Bu. Xian-He, Metal/covalent-organic framework based cathodes for metal-ion batteries. Adv. Energy Mater. 12, 2100172 (2022).

    Article  CAS  Google Scholar 

  8. M. Shaharyar Wani, U. Anjum, T.S. Khan, R.S. Dhaka, and M. Ali Haider, Understanding Na-Ion transport in NaxV4O10 electrode material for sodium-ion batteries. J. Electron. Mater. 50, 1794 (2021).

    Article  Google Scholar 

  9. Y. Liu, J. Liao, Z. Tang, Y. Chao, W. Chen, X. Wu, and W. Wu, Improved sodium storage performance of Zn-substituted P3-Na0.67Ni0.33Mn0.67O2 cathode materials for sodium-ion batteries. J. Electron. Mater. 52, 864 (2023).

    Article  CAS  Google Scholar 

  10. Y. Xia, X.H. Ren, Z. Xiao, Y.P. Gan, J. Zhang, H. Huang, X.P. He, Q.Z. Mao, G.G. Wang, and W.K. Zhang, Spinel LiNi0.5Mn1.5O4 shell enables Ni-rich layered oxide cathode with improved cycling stability and rate capability for high-energy lithium-ion batteries. Electrochim. Acta 418, 140352 (2022).

    Article  CAS  Google Scholar 

  11. T.F. Zhang, C. Li, F. Wang, A. Noori, M.F. Mousavi, X.H. Xia, and Y.Q. Zhang, Recent advances in carbon anodes for sodium-ion batteries. Chem. Rec. 22, e202200083 (2022).

    CAS  Google Scholar 

  12. D. Zhou, X. Guo, Q. Zhang, Y. Shi, H. Zhang, Yu. Chao, and H. Pang, Nickel-based materials for advanced rechargeable batteries. Adv. Funct. Mater. 32, 2107928 (2022).

    Article  CAS  Google Scholar 

  13. H. Zhang, Y. Gao, X.-H. Liu, Z. Yang, X.-X. He, Li. Li, Y. Qiao, W.-H. Chen, R.-H. Zeng, Y. Wang, and S.-L. Chou, Organic cathode materials for sodium-ion batteries: from fundamental research to potential commercial application. Adv. Funct. Mater. 32, 2107718 (2022).

    Article  CAS  Google Scholar 

  14. W. Li, Z. Yao, Y. Liu, S. Zhang, X. Wang, X. Xia, C. Gu, and J. Tu, Optimizing quasi-solid-state sodium storage performance of Na3V2(PO4)2F2.5O0.5 cathode by structural design plus nitrogen doping. Chem. Eng. J. 433, 133557 (2022).

    Article  CAS  Google Scholar 

  15. X. Han, Q. Zhang, H. Liu, and J. Sun, Metal-Perylene-3,4,9,10-tetracarboxylate as a promising anode material for sodium ion batteries. J. Electron. Mater. 48, 5055 (2019).

    Article  CAS  Google Scholar 

  16. A. Zhou, W. Cheng, W. Wang, Q. Zhao, J. Xie, W. Zhang, H. Gao, L. Xue, and J. Li, Hexacyanoferrate-type Prussian blue analogs: principles and advances toward high-performance sodium and potassium ion batteries. Adv. Energy Mater. 11, 2000943 (2020).

    Article  Google Scholar 

  17. Y. Yuan, D. Bin, X. Dong, Y. Wang, C. Wang, and Y. Xia, Intercalation pseudocapacitive nanoscale nickel hexacyanoferrate@carbon nanotubes as a high-rate cathode material for aqueous sodium-ion battery. ACS Sustain. Chem. Eng. 8, 3655 (2020).

    Article  CAS  Google Scholar 

  18. P. Wan, H. Xie, N. Zhang, S. Zhu, C. Wang, Yu. Zhen, W. Chu, Li. Song, and S. Wei, Stepwise hollow Prussian blue nanoframes/carbon nanotubes composite film as ultrahigh rate sodium ion cathode. Adv. Funct. Mater. 30, 2002624 (2020).

    Article  CAS  Google Scholar 

  19. D. Zhang, Z. Yang, J. Zhang, H. Mao, J. Yang, and Y. Qian, Truncated cobalt hexacyanoferrate nanocubes threaded by carbon nanotubes as a high-capacity and high-rate cathode material for dual-ion rechargable aqueous batteries. J. Power Sources 399, 1 (2018).

    Article  CAS  Google Scholar 

  20. Z. Wang, Ye. Liu, Wu. Zhijun, G. Guan, D. Zhang, H. Zheng, Xu. Shoudong, S. Liu, and X. Hao, A string of nickel hexacyanoferrate nanocubes coaxially grown on a CNT@bipolar conducting polymer as a high-performance cathode material for sodium-ion batteries. Nanoscale 9, 823 (2017).

    Article  CAS  Google Scholar 

  21. Y.-C. Lin, C.-H. Chuang, L.-Y. Hsiao, M.-H. Yeh, and K.-C. Ho, Oxygen plasma activation of carbon nanotubes-interconnected Prussian blue analogue for oxygen evolution reaction. ACS Appl. Mater. Interfaces 12, 42634 (2020).

    Article  CAS  Google Scholar 

  22. H. Wang, E. Xu, S. Yu, D. Li, J. Quan, L. Xu, L. Wang, and Y. Jiang, Reduced graphene oxide-anchored manganese hexacyanoferrate with low interstitial H2O for superior sodium-ion batteries. ACS Appl. Mater. Interfaces 10, 34222 (2018).

    Article  CAS  Google Scholar 

  23. C. Li, C. Zheng, F. Cao, Y.Q. Zhang, and X.H. Xia, The development trend of graphene derivatives. J. Electron. Mater. 51, 4107 (2022).

    Article  CAS  Google Scholar 

  24. J. Luo, S. Sun, J. Peng, B. Liu, Y. Huang, K. Wang, Q. Zhang, Y. Li, Y. Jin, Y. Liu, Y. Qiu, Q. Li, J. Han, and Y. Huang, Graphene-roll-wrapped Prussian blue nanospheres as a high-performance binder-free cathode for sodium-ion batteries. ACS Appl. Mater. Interfaces 9, 25317 (2017).

    Article  CAS  Google Scholar 

  25. Y. Tang, W. Zhang, L. Xue, X. Ding, T. Wang, X. Liu, J. Liu, X. Li, and Y. Huang, Polypyrrole-promoted superior cyclability and rate capability of NaxFe[Fe(CN)6] cathodes for sodium-ion batteries. J. Mater. Chem. A 4, 6036 (2016).

    Article  CAS  Google Scholar 

  26. Y.F. Yuan, Q. Chen, M. Zhu, G.S. Cai, and S.Y. Guo, Nano tube-in-tube CNT@void@TiO2@C with excellent ultrahigh rate capability and long cycling stability for lithium ion storage. J. Alloys Compd. 851, 156795 (2021).

    Article  CAS  Google Scholar 

  27. X. Zhang, Y. Chen, M. Chen, B. Wang, Yu. Bo, X. Wang, W. Zhang, and D. Yang, FeNi3-modified Fe2O3/NiO/MoO2 heterogeneous nanoparticles immobilized on N, P co-doped CNT as an efficient and stable electrocatalyst for water oxidation. Nanoscale 12, 3777 (2020).

    Article  CAS  Google Scholar 

  28. G. Shen, Z. Liu, P. Liu, J. Duan, H.A. Younus, H. Deng, X. Wang, and S. Zhang, Constructing a 3D compact sulfur host based on carbon-nanotube threaded defective Prussian blue nanocrystals for high performance lithium-sulfur batteries. J. Mater. Chem. A 8, 1154 (2020).

    Article  CAS  Google Scholar 

  29. S. Chen, S. Fan, D. Xiong, M.E. Pam, Y. Wang, Y. Shi, and H.Y. Yang, Nanoframes@CNT beads-on-a-string structures: toward an advanced high-stable sodium-ion full battery. Small 16, 2005095 (2020).

    Article  CAS  Google Scholar 

  30. R. Li, X. Liu, W. Qui, and M. Zhang, In vivo monitoring of H2O2 with polydopamine and Prussian blue-coated microelectrode. Anal. Chem. 88, 7769 (2016).

    Article  CAS  Google Scholar 

  31. S. Zhang, G. Wang, B. Wang, J. Wang, J. Bai, and H. Wang, 3D carbon nanotube network bridged hetero-structured Ni-Fe-S nanocubes toward high-performance lithium, sodium, and potassium storage. Adv. Funct. Mater. 30, 2001592 (2020).

    Article  CAS  Google Scholar 

  32. J. Lin, K. Li, M. Wang, X. Chen, J. Liu, and H. Tang, Reagentless and sensitive determination of carcinoembryonic antigen based on a stable Prussian blue modified electrode. RSC Adv. 10, 38316 (2020).

    Article  CAS  Google Scholar 

  33. Y. Li, K.-h Lam, and X. Hou, CNT-modified two-phase manganese hexacyanoferrate as a superior cathode for sodium-ion batteries. Inorg. Chem. Front. 8, 1819 (2021).

    Article  CAS  Google Scholar 

  34. X. Zhang, Y. Chen, M. Chen, Yu. Bo, B. Wang, X. Wang, W. Zhang, and D. Yang, MOF derived multi-metal oxides anchored N, P-doped carbon matrix as efficient and durable electrocatalyst for oxygen evolution reaction. J. Colloid Interface Sci. 581, 608 (2021).

    Article  CAS  Google Scholar 

  35. N. Vishnu, A. Senthil Kumar, and S. Badhulika, Selective in-situ derivatization of intrinsic nickel to nickel hexacyanoferrate on carbon nanotube and its application for electrochemical sensing of hydrazine. J. Electroanal. Chem. 837, 60 (2019).

    Article  CAS  Google Scholar 

  36. Z. Yao, X. Xia, C.A. Zhou, Y. Zhong, Y. Wang, S. Deng, W. Wang, X. Wang, and J. Tu, Smart construction of integrated CNTs/Li4Ti5O12 core/shell arrays with superior high-rate performance for application in lithium-ion batteries. Adv. Sci. 5, 1700786 (2018).

    Article  Google Scholar 

  37. X.J. Li, Y. Zhao, W.G. Chu, Y. Wang, Z.J. Li, P. Jiang, X.C. Zhao, M.H. Liang, and Y. Liu, Vertically aligned carbon nanotube@MnO2 nanosheet arrays grown on carbon cloth for high performance flexible electrodes of supercapacitors. RSC Adv. 5, 77437 (2015).

    Article  CAS  Google Scholar 

  38. L. Yang, Q. Liu, M. Wan, Yu. Jiayu Peng, H.Z. Luo, J. Ren, L. Xue, and W. Zhang, Surface passivation of NaxFe[Fe(CN)6] cathode to improve its electrochemical kinetics and stability in sodium-ion batteries. J. Power Sources 448, 227421 (2020).

    Article  CAS  Google Scholar 

  39. Y. You, X. Yu, Y. Yin, K.-W. Nam, and Y.-G. Guo, Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries. Nano Res. 8, 117 (2014).

    Article  Google Scholar 

  40. M.M. Barsan, I.S. Butler, J. Fitzpatrick, and D.F.R. Gilson, High-pressure studies of the micro-Raman spectra of iron cyanide complexes: Prussian blue (Fe4[Fe(CN)6]3), potassium ferricyanide (K3[Fe(CN)6]), and sodium nitroprusside (Na2[Fe(CN)5(NO)]·2H2O). J. Raman Spectrosc. 42, 1820 (2011).

    Article  CAS  Google Scholar 

  41. K.W. Chapman, P.J. Chupas, and C.J. Kepert, Compositional dependence of negative thermal expansion in the Prussian blue analogues MIIPtIV(CN)6 (M ) Mn, Fe Co, Ni, Cu, Zn, Cd). J. Am. Chem. Soc. 128, 7009 (2006).

    Article  CAS  Google Scholar 

  42. R. Mažeikienė, G. Niaura, and A. Malinauskas, Electrochemical redox processes at cobalt hexacyanoferrate modified electrodes: an in situ Raman spectroelectrochemical study. J. Electroanal. Chem. 719, 60 (2014).

    Article  Google Scholar 

  43. Xu. Yifan, Du. Yichen, Z. Yi, Z. Zhang, C. Lai, J. Liao, and X. Zhou, Coupling Co3[Co(CN)6]2 nanocubes with reduced graphene oxide for high-rate and long-cycle-life potassium storage. J. Energy Chem. 58, 593 (2021).

    Article  Google Scholar 

  44. M. Wan, Y. Tang, L. Wang, X. Xiang, X. Li, K. Chen, L. Xue, W. Zhang, and Y. Huang, Core–shell hexacyanoferrate for superior Na-ion batteries. J. Power Sources 329, 290 (2016).

    Article  CAS  Google Scholar 

  45. P. Zhang, Xu. Chunliu, J. Zhao, Y. Ma, Hu. Xin, L. Hao, X. Li, Y. Yang, Xu. Shuyin, H. Liu, and Hu. Yong-Sheng, Rapid and solvent-free mechanochemical synthesis of Na iron hexacyanoferrate for high-performance Na-Ion batteries. Mater. Today Energy 27, 101027 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 52102315), the Postdoctoral Science Foundation of Zhejiang Province (ZJ2022095), the Visiting Scholar Fund of State Key Laboratory of Silicon Materials (No. SKL2022-08), the Fundamental Research Funds of Zhejiang Sci-Tech University (No. 20212297-Y), the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering (No. 2021SZTD006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhujun Yao or Yefeng Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 392 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Ruan, L., Yao, W. et al. Tailoring Sodium Iron Hexacyanoferrate/Carbon Nanotube Arrays with 3D Networks for Efficient Sodium Ion Storage. J. Electron. Mater. 52, 3517–3525 (2023). https://doi.org/10.1007/s11664-023-10337-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10337-6

Keywords

Navigation