Skip to main content

Advertisement

Log in

Understanding Na-Ion Transport in NaxV4O10 Electrode Material for Sodium-Ion Batteries

  • Asian Consortium ACCMS–International Conference ICMG 2020
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Sodium ion batteries have shown their potential as an attractive candidate for energy storage. Different metal oxides, especially transition metal oxides such as V4O10 have shown good electrochemical characteristics owing to their unique lattice structure and multiple oxidation states. An understanding of the sodium-ion transport is crucial in optimizing these electrode materials. Here, the trends in sodium-ion diffusivity are estimated using atomistic modeling. Na-ion diffusivity is calculated using molecular dynamics (MD) simulations in NaxV4O10 for different sodium contents (0.33 < x < 1.33). On varying the concentration of sodium, a significant effect on Na-ion transport is observed. Overall, Na0.66V4O10 is calculated to show maximum Na-ion diffusivity (5.75 × 10−8 cm2s−1) at 300 K suggesting better transport properties as a cathode material for sodium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Larcher and J.M. Tarascon, Nat. Chem. 7, 19 (2015).

    Article  CAS  Google Scholar 

  2. P.K. Nayak, L. Yang, W. Brehm, and P. Adelhelm, Angew. Chemie Int. Ed. 57, 102 (2018).

    Article  CAS  Google Scholar 

  3. J.Y. Hwang, S.T. Myung, and Y.K. Sun, Chem. Soc. Rev. 46, 3529 (2017).

    Article  CAS  Google Scholar 

  4. P.F. Wang, Y. You, Y.X. Yin, and Y.G. Guo, Adv. Energy Mater. 8, 1 (2018).

    Google Scholar 

  5. Z. Dai, U. Mani, H.T. Tan, and Q. Yan, Small Methods 1, 1700098 (2017).

    Article  CAS  Google Scholar 

  6. F. Sauvage, L. Laffont, J.M. Tarascon, and E. Baudrin, Inorg. Chem. 46, 3289 (2007).

    Article  CAS  Google Scholar 

  7. J.C. Treacher, S.M. Wood, M.S. Islam, and E. Kendrick, Phys. Chem. Chem. Phys. 18, 32744 (2016).

    Article  CAS  Google Scholar 

  8. D. Wang, Y. Wu, J. Lv, R. Wang, and S. Xu, Colloids and Surfaces A: physicochem. Eng. Asp. 583, 123957 (2019).

    Article  CAS  Google Scholar 

  9. W. Li, Y. Wang, G. Hu, Z. Peng, Y. Cao, Y. Zeng, and K. Du, J. Alloys Compd. 779, 147 (2019).

    Article  CAS  Google Scholar 

  10. Z. Yang, G. Li, J. Sun, L. Xie, Y. Jiang, Y. Huang, and S. Chen, Energy Storage Mater. 25, 724 (2020).

    Article  Google Scholar 

  11. X. Cao, Q. Yang, L. Zhu, and L. Xie, Ionics Kiel. 24, 943 (2018).

    Article  CAS  Google Scholar 

  12. D. Chao, C.H.M. Lai, P. Liang, Q. Wei, Y.S. Wang, C.R. Zhu, G. Deng, V.V.T. Doan-Nguyen, J. Lin, L. Mai, H.J. Fan, B. Dunn, and Z.X. Shen, Adv. Energy Mater. 8, 1 (2018).

    Article  CAS  Google Scholar 

  13. M. Reynaud, A. Wizner, N.A. Katcho, L.C. Loaiza, M. Galceran, J. Carrasco, T. Rojo, M. Armand, and M. Casas-Cabanas, Electrochem. Commun. 84, 14 (2017).

    Article  CAS  Google Scholar 

  14. L. Wang, Y.G. Sun, L.L. Hu, J.Y. Piao, J. Guo, A. Manthiram, J. Ma, and A.M. Cao, J. Mater. Chem. A 5, 8752 (2017).

    Article  CAS  Google Scholar 

  15. S. Li, Y. Dong, L. Xu, X. Xu, L. He, and L. Mai, Adv. Mater. 26, 3545 (2014).

    Article  CAS  Google Scholar 

  16. Y. Lu, J. Wu, J. Liu, M. Lei, S. Tang, P. Lu, L. Yang, H. Yang, and Q. Yang, A.C.S. Appl. Mater. Interfaces 7, 17433 (2015).

    Article  CAS  Google Scholar 

  17. Y. Lee, S.M. Oh, B. Park, B.U. Ye, N.S. Lee, J.M. Baik, S.J. Hwang, and M.H. Kim, Cryst. Eng. Commun. 19, 5028 (2017).

    Article  CAS  Google Scholar 

  18. H. Liu, Y. Wang, L. Li, K. Wang, E. Hosono, and H. Zhou, J. Mater. Chem. 19, 7885 (2009).

    Article  CAS  Google Scholar 

  19. H. He, X. Zeng, H. Wang, N. Chen, D. Sun, Y. Tang, X. Huang, and Y. Pan, J. Electrochem. Soc. 162, A39 (2015).

    Article  CAS  Google Scholar 

  20. N. Emery, R. Baddour-Hadjean, D. Batyrbekuly, B. Laïk, Z. Bakenov, and J.P. Pereira-Ramos, Chem. Mater. 30, 5305 (2018).

    Article  CAS  Google Scholar 

  21. D. Jiang, H. Wang, G. Li, G. Li, X. Lan, M.H. Abib, Z. Zhang, and Y. Jiang, J. Electrochem. Soc. 162, A697 (2015).

    Article  CAS  Google Scholar 

  22. R. Baddour-Hadjean, S. Bach, N. Emery, and J.P. Pereira-Ramos, J. Mater. Chem. 21, 11296 (2011).

    Article  CAS  Google Scholar 

  23. H. Liu, H. Zhou, L. Chen, Z. Tang, and W. Yang, J. Power Sources 196, 814 (2011).

    Article  CAS  Google Scholar 

  24. S. Liang, J. Zhou, G. Fang, C. Zhang, J. Wu, Y. Tang, and A. Pan, Electrochim. Acta 130, 119 (2014).

    Article  CAS  Google Scholar 

  25. W. He, J. Qian, Y. Cao, X. Ai, and H. Yang, RSC Adv. 2, 3423 (2012).

    Article  CAS  Google Scholar 

  26. Y. Yin, Y. Hu, P. Wu, H. Zhang, and C. Cai, Chem. Commun. 48, 2137 (2012).

    Article  CAS  Google Scholar 

  27. W. Luo, J.J. Gaumet, and L. Mai, MRS Commun. 7, 152 (2017).

    Article  CAS  Google Scholar 

  28. M. Chandra, T.S. Khan, R. Shukla, S. Ahamad, A. Gupta, S. Basu, M.A. Haider, and R.S. Dhaka, Electrochim. Acta 331, 135293 (2020).

    Article  CAS  Google Scholar 

  29. T.J. Willis, D.G. Porter, D.J. Voneshen, S. Uthayakumar, F. Demmel, M.J. Gutmann, M. Roger, K. Refson, and J.P. Goff, Sci. Rep. 8, 1 (2018).

    Article  CAS  Google Scholar 

  30. R. Saroha, T.S. Khan, M. Chandra, R. Shukla, A.K. Panwar, A. Gupta, M.A. Haider, S. Basu, and R.S. Dhaka, ACS Omega 4, 9878 (2019).

    Article  CAS  Google Scholar 

  31. G. Ali, M. Islam, H. Jung, K. Nam, and K.Y. Chung, A.C.S. Appl. Mater. Interfaces 10, 18717 (2018).

    Article  CAS  Google Scholar 

  32. S. Bach, Solid State Ionics 37, 41–49 (1989).

    Article  CAS  Google Scholar 

  33. G.J. Shu and F.C. Chou, Phys. Rev. B Condens. Matter. Mater. Phys 78, 3 (2008).

    Article  CAS  Google Scholar 

  34. S. Komaba, T. Mikumo, N. Yabuuchi, A. Ogata, H. Yoshida, and Y. Yamada, J. Electrochem. Soc. 157, A60 (2010).

    Article  CAS  Google Scholar 

  35. T. Shibata, W. Kobayashi, and Y. Moritomo, Appl. Phys. Express 8, 029201 (2015).

    Article  CAS  Google Scholar 

  36. P.A. Aparicio, J.A. Dawson, M.S. Islam, and N.H. De Leeuw, J. Phys. Chem. C 122, 25829 (2018).

    Article  CAS  Google Scholar 

  37. P.A. Aparicio and N.H. De Leeuw, Phys. Chem. Chem. Phys. 22, 6653 (2020).

    Article  CAS  Google Scholar 

  38. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K.A. Persson, APL Mater. 1, 011002 (2013).

    Article  CAS  Google Scholar 

  39. U. Anjum, S. Vashishtha, M. Agarwal, P. Tiwari, N. Sinha, A. Agrawal, S. Basu, and M.A. Haider, Int. J. Hydrogen Energy 41, 7631 (2016).

    Article  CAS  Google Scholar 

  40. U. Anjum, S. Vashishtha, N. Sinha, and M. Ali Haider, Solid State Ionics 280, 24 (2015).

    Article  CAS  Google Scholar 

  41. E. Lee, K.R. Lee, and B.J. Lee, J. Phys. Chem. C 121, 13008 (2017).

    Article  CAS  Google Scholar 

  42. L. Benitez and J.M. Seminario, J. Electrochem. Soc. 164, E3159 (2017).

    Article  CAS  Google Scholar 

  43. R. Buchholz, C. Kraetzer, and J. Dittmann, J. Am. Chem. Soc. 114, 10024–10035 (1992).

    Article  Google Scholar 

  44. C.J. Casewit, K.S. Colwell, and A.K. Rappé, J. Am. Chem. Soc. 114, 10046 (1992).

    Article  CAS  Google Scholar 

  45. M.A. Addicoat, N. Vankova, I.F. Akter, and T. Heine, J. Chem. Theory Comput. 10, 880 (2014).

    Article  CAS  Google Scholar 

  46. A.K. Rappé and W.A. Goddard, J. Phys. Chem. 95, 3358 (1991).

    Article  Google Scholar 

  47. N. Kumari, U. Anjum, M.A. Haider, and S. Basu, MRS Adv. 4, 783 (2019).

    Article  CAS  Google Scholar 

  48. U. Anjum, T.S. Khan, M. Agarwal, and M.A. Haider, A.C.S. Appl. Mater. Interfaces 11, 25243 (2019).

    Article  CAS  Google Scholar 

  49. U. Anjum, M. Agarwal, T.S. Khan, Prateek, R.K. Gupta, and M.A. Haider, Nanoscale 11, 21404 (2019).

    Article  CAS  Google Scholar 

  50. U. Anjum, M. Agarwal, T.S. Khan, and M.A. Haider, Ionics Kiel. 26, 1307 (2020).

    Article  CAS  Google Scholar 

  51. M. Vijayakumar and S. Selvasekarapandian, Mater. Res. Bull. 38, 1735 (2003).

    Article  CAS  Google Scholar 

  52. W. Li and S.H. Garofalini, J. Electrochem. Soc. 152, A364 (2005).

    Article  CAS  Google Scholar 

  53. W.-D. Li, C.-Y. Xu, Y. Du, H.-T. Fang, Y.-J. Feng, and L. Zhen, J. Electrochem. Soc. 161, A75 (2014).

    Article  CAS  Google Scholar 

  54. J.P. Pereira-Ramos, R. Messina, L. Znaidi, and N. Baffier, Solid State Ionics 28–30, 886–894 (1988).

    Article  Google Scholar 

  55. J. Galy, J. Darriet, A. Casalot, and J.B. Goodenough, J. Solid State Chem. 1, 339 (1970).

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the highperformance computing facility at IIT Delhi and financial support extended by the Department of Science and Technology, Government of India under the Grant Number DST/TMD/MECSP/2KI7/07.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Uzma Anjum, Tuhin S. Khan or M. Ali Haider.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wani, M.S., Anjum, U., Khan, T.S. et al. Understanding Na-Ion Transport in NaxV4O10 Electrode Material for Sodium-Ion Batteries. J. Electron. Mater. 50, 1794–1799 (2021). https://doi.org/10.1007/s11664-020-08563-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08563-3

Keywords

Navigation