Skip to main content

Advertisement

Log in

Metal-Perylene-3,4,9,10-Tetracarboxylate as a Promising Anode Material for Sodium Ion Batteries

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Sodium ion batteries (SIBs) have recently attracted increasing attention as promising alternatives to lithium ion batteries. Therefore, there is an urgent need to develop suitable electrode materials with high energy efficiency and good cyclic stability for SIBs. In this work, a series of metal–organic complexes (M-PTC, metal = Li, Ni, Co, Mn) based on 3,4,9,10-perylene-tetracaboxylicacid-dianhydride have been prepared by a simple rheological phase method. The structure, morphology, thermal stability and electrochemical properties of the obtained M-PTC have been systematically investigated. As anodes for SIBs, Ni-PTC electrodes deliver high initial capacity but poor cycling stability, while Co-PTC electrodes present good cycling stability but low capacity. Remarkably, Li-PTC and Mn-PTC electrodes show both high capacity and good cycling stability. Electrochemical impedance spectroscopy demonstrates that Li-PTC and Mn-PTC electrodes have a smaller impedance than that of Ni-PTC and Co-PTC electrodes. The superior electrochemical performance of Li-PTC and Mn-PTC electrodes can be ascribed to their regular morphology, appropriate particle size, and monodispersed structure. The results indicate that these metal–organic complexes are promising anode materials for SIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Dunn, H. Kamath, and J.M. Tarascon, Science 334, 928 (2011).

    Article  Google Scholar 

  2. J. Zhou, Y. Huang, X.H. Cao, B. Ouyang, W.P. Sun, C.L. Tan, Y. Zhang, Q.L. Ma, S.Q. Liang, Q.Y. Yan, and H. Zhang, Nanoscale 7, 7035 (2015).

    Article  Google Scholar 

  3. F. Wang, J.Y. Wang, H. Ren, H.J. Tang, R.B. Yu, and D. Wang, Inorg. Chem. Front. 3, 365 (2016).

    Article  Google Scholar 

  4. X.M. Yan, Y. Yang, E.S. Liu, L.Q. Sun, H. Wang, X.Z. Liao, Y.S. He, and Z.F. Ma, Electrochim. Acta 225, 235 (2017).

    Article  Google Scholar 

  5. Q. Zhao, Z.Q. Zhu, and J. Chen, Adv. Mater. 29, 1607007 (2017).

    Article  Google Scholar 

  6. Z.P. Song and H.S. Zhou, Energ. Environ. Sci. 6, 2280 (2013).

    Google Scholar 

  7. Z.Q. Zhu, M.L. Hong, D.S. Guo, J.F. Shi, Z.L. Tao, and J. Chen, J. Am. Chem. Soc. 136, 16461 (2014).

    Article  Google Scholar 

  8. R.V. Noorden, Nature 507, 26 (2014).

    Article  Google Scholar 

  9. J.M. Tarascon, Nat. Chem. 2, 510 (2010).

    Article  Google Scholar 

  10. V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, Energy Environ. Sci. 9, 3243 (2011).

    Article  Google Scholar 

  11. M.D. Slater, D. Kim, E. Lee, and C.S. Johnson, Adv. Funct. Mater. 23, 947 (2013).

    Article  Google Scholar 

  12. N. Yabuuchi, K. Kubota, M. Dahbi, and S. Komaba, Chem. Rev. 114, 11636 (2014).

    Article  Google Scholar 

  13. V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J. Carretero-Gonzalez, and T. Rojo, Energy Environ. Sci. 5, 5884 (2012).

    Article  Google Scholar 

  14. S.P. Ong, V.L. Chevrier, G.F. Hautier, A. Jain, C. Moore, S. Kim, X.H. Ma, and G. Ceder, Energy Environ. Sci. 4, 3680 (2011).

    Article  Google Scholar 

  15. X.L. Wang, G. Li, F.M. Hassan, J.D. Li, X.Y. Fan, R. Batmaz, X.C. Xiao, and Z.W. Chen, Nano Energy 15, 746 (2015).

    Article  Google Scholar 

  16. H.G. Wang, Z. Wu, F.L. Meng, D.L. Ma, X.L. Huang, L.M. Wang, and X.B. Zhang, Chemsuschem 6, 56 (2013).

    Article  Google Scholar 

  17. X.J. Zhang, G. Zhu, M. Wang, J.B. Li, T. Lu, and L.K. Pan, Carbon 116, 686 (2017).

    Article  Google Scholar 

  18. R. Zhao, L. Zhu, Y. Cao, X. Ai, and H.X. Yang, Electrochem. Commun. 21, 36 (2012).

    Article  Google Scholar 

  19. Z.P. Song, Y.M. Qian, T. Zhang, M. Otani, and H.S. Zhou, Adv. Sci. 2, 1500124 (2015).

    Article  Google Scholar 

  20. L.Q. Mu, Y.X. Lu, X.Y. Wu, Y.J. Ding, Y.S. Hu, H. Li, L.Q. Chen, and X.J. Huang, Green Energy Environ. 3, 63 (2018).

    Article  Google Scholar 

  21. X.Y. Han, H.K. Mao, and H.W. Liu, J. Electroanal. Chem. 802, 89 (2017).

    Article  Google Scholar 

  22. Y. Wang, Q.T. Qu, G. Liu, V.S. Battaglia, and H.H. Zheng, Nano Energy 39, 200 (2017).

    Article  Google Scholar 

  23. L.P. Wang, J. Zou, S.L. Chen, J.Y. Yang, F.Z. Qing, P. Gao, and J.Z. Li, Electrochim. Acta 235, 304 (2017).

    Article  Google Scholar 

  24. W.W. Deng, J.F. Qian, Y.L. Cao, X.P. Ai, and H.X. Yang, Small 12, 583 (2016).

    Article  Google Scholar 

  25. P. Sharma, D. Damien, K. Nagarajan, M. Shaijumon, and M. Hariharan, J. Phys. Chem. Lett. 4, 3192 (2013).

    Article  Google Scholar 

  26. J. Wang, X.M. Wang, H.F. Li, X.W. Yang, and Y.G. Zhang, J. Electroanal. Chem. 773, 22 (2016).

    Article  Google Scholar 

  27. J.J. Ma, H.J. Wang, X.R. Liu, L.D. Lu, L.Y. Nie, X. Yang, Y.Q. Chai, and R. Yuan, Chem. Eng. J. 309, 545 (2017).

    Article  Google Scholar 

  28. H.G. Wang, S. Yuan, D.L. Ma, X.L. Huang, F.L. Meng, and X.B. Zhang, Adv. Energy Mater. 4, 1301651 (2014).

    Article  Google Scholar 

  29. J.T. Sun, W. Xie, L.J. Yuan, K.L. Zhang, and Q.Y. Wang, Mater. Sci. Eng. B 64, 157 (1999).

    Article  Google Scholar 

  30. X.Y. Han, F. Yi, T.L. Sun, and J.T. Sun, Electrochem. Commun. 25, 136 (2012).

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (No. 21503282).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Han.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 285 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X., Zhang, Q., Liu, H. et al. Metal-Perylene-3,4,9,10-Tetracarboxylate as a Promising Anode Material for Sodium Ion Batteries. J. Electron. Mater. 48, 5055–5061 (2019). https://doi.org/10.1007/s11664-019-07308-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07308-1

Keywords

Navigation